
Starling

Models H0430 & H0440

Programming Guide & Reference

version 1.1 — August 2015 CompuPhase

ii

“CompuPhase” and “Pawn” are trademarks of ITB CompuPhase.
“Linux” is a registered trademark of Linus Torvalds.
“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft
Corporation.

Copyright c⃝ 2012–2015, ITB CompuPhase
Eerste Industriestraat 19–21, 1401VL Bussum, The Netherlands
telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com
WWW: http://www.compuphase.com

The information in this manual and the associated software are
provided “as is”. There are no guarantees, explicit or implied,
that the software and the manual are accurate.

Typeset with TEX in the “DejaVu” typeface family.

iii

Contents
Overview . 1

Event-driven programming .1
Modules .6
Timers, synchronization and alarms .6
RS232 . 9
Packed and unpacked strings .11
UU-encoding . 12
Rational numbers .13
USB . 15

File system .16
Filename matching . 18
INI files . 20

Network .21
Usage . 21
Low-level interface . 22
High-level interface .24
Audio streams .25
Transferring files . 31
Monitoring and configuration with SNMP31
HTTP, FTP and TFTP servers . 34

Development and debugging .38
Reducing memory requirements . 38
Finding errors (debugging) . 39
Transferring scripts over RS232 or USB 40

Public functions .43
Native functions . 55
Resources .137
Index .139

iv

Event-driven programming — 1

Overview
The “PAWN” programming language is a general purpose script-
ing language, and it is currently in use on a large variety of sys-
tems: from servers to embedded devices. Its small footprint,
high performance and flexible interface to the “native” function-
ality of the host application/system, make PAWN well suited for
embedded use.
This reference assumes that the reader understands the PAWN
language. For more information on PAWN, please read the man-
ual “The PAWN booklet — The Language” which comes with the
Starling. For an introduction of the Starling audio controller and
its programming interface, please see the Starling User Guide.

Event-driven programming
The Starling follows an “event-driven” programming model. In
this model, your script does not poll for events, but instead an
event “fires” a function in your script. This function then runs to
completion and then returns. In absence of events, the script is
idle: no function runs.

The general I/O pins of the Starling are defined as inputs on
@input: 44start-up and each pin has an internal pull-up. When an I/O pin is

shorted to the ground, this fires a “input status changed” event
and the @input function in your script will run.∗ The @input func-

∗ Provided that the script contains an @input function; if the script lacks the
@input function, the “input status changed” events would be discarded.

2 — Event-driven programming

tion then handles the event, perhaps by starting to play another
track, or changing volume or tone settings. After it is done, @in-
put simply returns or exits the script. The script is now idle, but
another event may wake it up. The event-driven programming
model thereby creates reactive and/or interactive programs. The
general manual “The PAWN booklet — The Language” has more
details on the event-driven model.

The following script is a first, simple, example for scripting the
Starling. In this script, the eight inputs are “linked” to playing
eight tracks, with hard-coded names. Simplicity is the goal for
this first example: later examples will remove the limitations of
this script. For the syntax of the programming language, please
see the general manual “The PAWN booklet — The Language”.
LISTING: switches1.p

/* switches1
*
* Play a track that is attached to an input; there are eight tracks
* associated with eight inputs. The tracks have predefined names.
* The inputs have an internal pull-up, so their default state is
* high (1).
*
* When pressing a switch for a track that is already playing, the
* track restarts.
*/

@input(pin, status)
{
/* act only on high-to-low edge (switch press) */
if (status == 0)

{
switch (pin)

{
case 0: play "track1.mp3"
case 1: play "track2.mp3"
case 2: play "track3.mp3"
case 3: play "track4.mp3"
case 4: play "track5.mp3"
case 5: play "track6.mp3"
case 6: play "track7.mp3"
case 7: play "track8.mp3"
}

}
}

When a function in the script is running, no other event can be
handled. That is, while the script is busy inside, say, the @timer
function, a change of an input is queued. Only after the pending
function has completed and has returned, will the “input change”
event be handled. Functions do not interrupt or pre-empt each
other.

Event-driven programming — 3

On power-up, the first function that will run is @reset.2 In this
function, you set up the peripherals that you need: RS232, I/O
ports, SPI, or other. In most programming environments, the
program is over as soon as the function @reset (or another pri-
mary entry point) returns —this is the traditional “flow-driven”
programming model. With the event-driven model in PAWN and
the Starling, the script continues to be active after @reset re-
turns. In fact, as the switches1.p script presented above demon-
strates, function @reset is optional: you do not need to include
it in your script if you have no particular initializations to make.

The event-driven programming model becomes convenient when
the number of “events” grows. Each event has a separate “han-
dler” (a public function in the PAWN environment) and it is pro-
cessed individually. As an example, the next script also turns
the green LED on for the duration of the track. That is, while
the Starling is playing audio, the LED will be on, and when not
playing, it will be off. To toggle the LED, the script uses a second
event: the status of the audio decoder.
LISTING: switches2.p

/* switches2
*
* Play a track that is attached to an input; there are eight tracks
* associated with eight inputs. The tracks have predefined names.
* The inputs have an internal pull-up, so their default state is
* high (1).
*
* The green LED is on when audio is playing and off when it is
* silent.
*
* When pressing a switch for a track that is already playing, the
* track restarts.
*/

@reset()
{
/* turn green LED off on start-up (no track is playing yet) */
setled LED_Green, false
}

@input(pin, status)
{
/* act only on high-to-low edge (switch press) */
if (status == 0)

{
switch (pin)

{
case 0: play "track1.mp3"
case 1: play "track2.mp3"

2 @reset is an alias for main.

4 — Event-driven programming

case 2: play "track3.mp3"
case 3: play "track4.mp3"
case 4: play "track5.mp3"
case 5: play "track6.mp3"
case 6: play "track7.mp3"
case 7: play "track8.mp3"
}

}
}

@audiostatus(AudioStat: status, decoder)
{
if (status == Playing)

setled LED_Green, true
else

setled LED_Green, false
}

As is apparent from this second example, function @reset serves
for one-time initialization. Here, it merely switches the green
LED off, because on start-up, no track is playing yet.

Function @audiostatus is another event function, that runs when
@audiostatus: 43 the status of the audio decoder changes; the parameter holds the

new status, which can be Stopped, Playing or Paused.

Apart from the “event” functions @input and @audiostatus men-
getiopin: 73 tioned earlier, the Starling programming environment also con-

tains native functions getiopin and audiostatus (without the “@”
prefix). The getiopin function returns the current status of an
input pin. With it, you can check the status of each pin at any
convenient time. Likewise, the audiostatus function returns the
active status of (one of) the audio decoders. With these func-
tions in hand, you could create a polling loop inside @reset and
skip the entire event-driven paradigm. For illustration, the next
sample does this.
LISTING: switches2a.p

/* switches2a
*
* The same program as switches2, but now implemented as a non-event
* driven program.
*/

@reset()
{
/* turn green LED off on start-up (no track is playing yet) */
setled LED_Green, false

/* we have to keep the status of all switches (in order to detect
* the changes)
*/

new curpin[8]

/* we need an extra variable outside the loop to detect changes

Event-driven programming — 5

* in playback status
*/

new AudioStat: curstatus = Stopped

/* this loop should never end */
for (;;)

{
/* test all inputs */
new pin, status
for (pin = 0; pin < 8; pin++)

{
status = getiopin(pin)
if (status != curpin[pin])

{
/* status changed, save new status */
curpin[pin] = status
/* ignore low-to-high edge, act on high-to-low only */
if (status == 0)

{
switch (pin)

{
case 0: play "track1.mp3"
case 1: play "track2.mp3"
case 2: play "track3.mp3"
case 3: play "track4.mp3"
case 4: play "track5.mp3"
case 5: play "track6.mp3"
case 6: play "track7.mp3"
case 7: play "track8.mp3"
}

}
}

}

/* test the audio status */
new AudioStat: audiostat = audiostatus()
if (audiostat != curstatus)

{
curstatus = audiostat
if (audiostat == Playing)

setled LED_Green, true
else

setled LED_Green, false

}
}

}

In the flow-driven programming model, a program has to poll for
events, rather than respond to them. In programming method-
ologies, the flow-driven and event-driven models are reciprocal:
the flow-driven model queries for events, the event-driven model
responds to events. Especially in the situations where the num-
ber of events grows, the event-driven model produces neater and
more compact scripts, that require less memory and in addition
respond to the events quicker.

6 — Modules

Modules
As a programming tool, PAWN consists of the “language” and a
“library”. The language is standardized and common for all ap-
plications. The library gives access to all the functionality that
the host application/device provides. That being the case, the
library is typically highly specific to the system into which PAWN
is embedded. In other words, PAWN lacks something like a stan-
dard library.

On the other hand, it quickly proved convenient to let applica-
tions and devices provide similar functionality in a common way.
This led to the library to be split up in several independent mod-
ules (which are also documented independently). An application/
device, then, takes its choice of “modules”, in addition to the
application-specific interface functions.

This reference documents the functions that are specific to the
Starling and the essentials from the several modules that it uses.
These modules are:
Core

The set of “core” functions (which support the language) is
documented in this book, as well as in the main book on
PAWN: “The PAWN booklet — The Language”.

File I/O
General purpose file reading/writing functions for both text
and binary files.

Fixed-point
Fixed-point rational arithmetic is supported. Details on the
fixed-point interface is in a separate application note “Fixed
Point Support Library”.

String functions
PAWN uses arrays for strings, and the Starling provides a gen-
eral set of string functions.

Time functions
The interface to the “date & time of the day”, as well as the
event timer (with a millisecond resolution).

Timers, synchronization and alarms
The Starling provides various ways to react on timed events.
These may be used in combination, as they run independently
of each other.

Timers, synchronization and alarms — 7

For activities that must run at a constant interval, the @timer
is usually the most convenient. This timer is set with function
settimer to “go off” each time an specific interval has elapsed.
This interval is in milliseconds —however, the timer resolution is
not necessarily one millisecond. Due to the event-driven nature
of the Starling, the precision of the timer depends on the activity
of other public functions in the script. Nevertheless, the @timer
function is the quick and precise general purpose timer.
The @timer function can also be set up as a single-shot timer. A
single shot timer fires are the specified number of milliseconds
“from now” and fires only once. This may be useful for time-out
checking, for example.
The second timer is the @alarm function, which is set through the
setalarm function. The primary purpose of this timer is to set a
callback that fires at a specific “wall-clock” time. This timer may
also be set to fire only at a specific date (in addition to a time).
The @alarm timer is a repeating timer, but if you include the date
and the year in the alarm specification, it has effectively become
a single-shot timer (“year” numbers in dates do not wrap around,
so they occur only once).
If you use the @alarm function, it may be needed to synchronize
the internal clock of the Starling to the actual time. This can be
done with the functions setdate and settime. When exchang-
ing the backup battery, the Starling resets its clock to 1 January
1970.
For some purposes, you do not need absolute time, and you can
use the @alarm function simply as a second timer. In comparison
with the @timer function, @alarm as a low resolution.
When events must be synchronized with audio that is playing, the
appropriate function is the @synch “timer” that works together
with an ID3 tag, and specifically the SYLT frame in this tag. An
ID3 tag is a block of information that is stored inside the audio
file —typically an MP3 file. The tag usually contains artist and
album information, and it may contains other information as well.
By adding time-stamped text to an MP3 file (in its ID3 tag), the
@synch function will “fire” at the appropriate times and holding
the line of text in its parameter. The script can then interpret the
text and act appropriately.
The example below plays an MP3 file∗ that was prepared with
a SYLT frame in its ID3 tag. The SYLT tag contains time-stamp

∗ The original MP3 file was recorded from a music box by Thea from the

8 — Timers, synchronization and alarms

strings in the form of:
+1 −2

where:
⋄ the operator (“+” or “−”) indicates a “toggle-on” or “toggle-off”
command for one of the on-board LEDs

⋄ the number following the operator indicates which LED (1 for
red, 2 for green)

Any number of codes may be on single time-stamped line, so you
can turn on both LEDs in the same command —or turn on one
LED while simultaneously turning of the other.
LISTING: sylt.p

/* Plays an audio track and turns on and off LEDs based on the
* commands stored in the ID3 tag (the SYLT frame).
*
* The commands have the form "+1 -2", where the numbers stand
* for the LEDs (red and green), and "+" and "-" mean "turn on" and
* "turn off" respectively. So in this example, the red LED is turned
* on and the green LED is turned off.
*/

@reset()
{
/* turn both LEDs off */
setled LED_Red, false
setled LED_Green, false

/* The "Tea for Two" theme recorded from a music box by Thea from
* the Klankbeeld group. Published on the freesound.org site.
*/

play "teafortwo.mp3"
}

@synch(const event{})
{
for (new index = 0; /* test is in the middle */ ; index++)

{
/* find first '+' or '-' */
new c
while ((c = event{index}) != '-' && c != '+' && c != EOS)

index++
if (c == EOS)

break /* exit the loop on an End-Of-String */

/* get the value behind the operator ('+' or '-') */
new pin = strval(event, index + 1)

/* the pins are numbered 1, 2,..., but the LEDs start at zero */
new LED:led = LED:(pin - 1)

/* turn on or off the led (based on the operator) */
setled led, (c == '+')
}

}

Klankbeeld group, and placed under the “Creative Commons” license.

RS232 — 9

RS232
The Starling has a standard serial RS232 interface, with two
ports. All common Baud rates and data word lay-outs are sup-
ported. The interface optionally supports software handshaking,
but no hardware handshaking. When using a single port, the
DTR and DSR lines are available for handshaking and testing de-
vice status.
Software handshaking is optional. When set up, software hand-
shaking uses the characters XOFF (ASCII 19, Ctrl-S) to request
that the other side stops sending data and XON (ASCII 17, Ctrl-
Q) to request that it resumes sending data. These characters
can therefore not be part of the normal data stream (as they
would be misinterpreted as control codes). Software handshak-
ing is therefore not suitable to transfer binary data directly (since
two byte values are “reserved”). Instead, binary data should be
transferred using a protocol like UU-encode.
The example script below functions as a simple terminal. It ac-
cepts a few commands that it receives over the first serial port. It
understands the basic commands to start playing files, to query
which files are on the memory card, and to set volume and bal-
ance.
LISTING: serial.p

@reset()
{
setserial 57600, 8, 1, 0, 0
transmit "READY: "
}

@receive(const data{}, length, port)
{
static buf{40}
strcat buf, data
if (strfind(buf, "\r") >= 0 || strfind(buf, "\n") >= 0)

{
parse buf
buf = "" /* prepare for next buffer */
}

}

stripline(string{})
{
/* strip leading whitespace */
new idx
for (idx = 0; string{idx} != EOS && string{idx} <= ' '; idx++)

{}

10 — RS232

strdel(string, 0, idx)

/* strip trailing whitespace */
for (idx = strlen(string); idx > 0 && string{idx-1} <= ' '; idx--)

{}
if (idx >= 0)

string{idx} = EOS
}

parse(string{}, size=sizeof string)
{
stripline string

new mark = strfind(string, " ")
if (mark < 0)

mark = strlen(string)

if (strcmp(string, "PLAY", true, mark) == 0)
{
/* remainder of the string is the filename */
strdel string, 0, mark
stripline string
if (!play(string))

transmit "Error playing file (file not found?)"
}

else if (strcmp(string, "STOP", true, mark) == 0)
stop

else if (strcmp(string, "VOLUME", true, mark) == 0)
{
strdel string, 0, mark
stripline string
setvolume .volume=strval(string)
}

else if (strcmp(string, "BALANCE", true, mark) == 0)
{
strdel string, 0, mark
stripline string
setvolume .balance=strval(string)
}

else if (strcmp(string, "LIST", true, mark) == 0)
{
strdel string, 0, mark
stripline string

if (strlen(string) == 0)
strpack string, "*", size

new count = fexist(string)
new filename{100}
for (new index = 0; index < count; index++)

{
fmatch filename, string, index
transmit filename
transmit "\n"
}

}
else

transmit "Unknown command or syntax error\n"

transmit "READY: "
}

Packed and unpacked strings — 11

Incoming data may be received character by character, or in
“chunks”. Especially when the data is typed in by a user, it is
likely that each invocation of @receive will only hold a single
character. These characters or string segments must be assem-
bled into whole commands. This script assumes that there is a
single command per line.

When @receive sees a line terminator (a “newline” or CR char-
acter), it sends the complete line to the function parse that de-
codes it using a few string manipulation functions. The function
stripline is a custom function that removes leading and trailing
“white space” characters (spaces, TAB characters and others).
The command “play” takes a parameter that follows the keyword
“play” after a space separator. To play the file “TRACK1.MP3” (and
assuming that you are connected to the Starling through a sim-
ple terminal), you would type:

play track1.mp3

The commands “volume” and “balance” also take a parameter (a
number, in this case). The command “list” optionally takes a file
pattern as a parameter; if the pattern is absent, all files on the
memory card are listed (i.e. the command “list” is short for “list
*”).

For transferring binary data over RS232, you may choose to con-
uudecode: 132vert the binary stream to UU-encode and transfer it as text, or

to explicitly use the length parameter in the public function @re-
ceive to determine howmany bytes have been received in binary
mode. When receiving data in binary mode, you should set up
the serial port to use no software handshaking —otherwise the
bytes that represent the XON & XOFF codes will still be gobbled
internally.

The Starling software toolkit also comes with a few ready-to-run
scripts, among which is a script that implements a full serial pro-
tocol, similar to that of professional DVD players. These scripts
come with commented source code and documentation in HTML
format, and may therefore serve as (advanced) programming ex-
amples.

Packed and unpacked strings
The PAWN language does not have variable types. All variables
are “cells” which are typically 32-bit wide (there exist implemen-
tations of PAWN that use 64-bit cells). A string is basically an ar-

12 — UU-encoding

ray of cells that holds characters and that is terminated with the
special character ’\0’.
However, in most character sets a character typically takes only
a single byte and a cell typically is a four-byte entity: storing
a single character per cell is then a 75% waste. For the sake
of compactness, PAWN supports packed strings, where each cell
holds as many characters as fit. In our example, one cell would
contain four characters, and there is no space wasted.
At the same time, PAWN also supports unpacked strings where
each cell holds only a single character, with the purpose of sup-
porting Unicode or other wide-character sets. The Unicode char-
acter set is usually represented as a 16-bit character set holding
the 60,000 characters of the Basic Multilingual Plane (BMP), and
access to other “planes” through escape codes. A PAWN script
can hold all characters of all planes in a cell, since a cell is typi-
cally at least 32-bit, without needing escape codes.
Many programming language solve handling of ASCII/Ansi char-
acter sets versus Unicode with their typing system. A function
will then work either on one or on the other type of string, but the
types cannot be mixed. PAWN, on the other hand, does not have
types or a typing system, but it can check, at run time, whether a
string a packed or unpacked. This also enables you to write a sin-
gle function that operates on both packed and unpacked strings.
The functions in the audio controller firmware have been con-
structed so that they work on packed and unpacked strings.

UU-encoding
For transmitting binary data over communication lines/channels
or protocols that do not support 8-bit transfers, or that reserve
some byte values for special “control characters”, a 6-bit data
encoding scheme was devised that uses only the standard ASCII
range. This encoding is called “UU-encoding”.
This daemon can encode a stream of binary data into ASCII strings
that can be transmitted over all networks that support ASCII.
The basic scheme is to break groups of 3 eight bit bytes (24 bits)
into 4 six bit characters and then add 32 (a space) to each six bit
character which maps it into the readily transmittable character.
As some transmission mechanisms compress or remove spaces,
spaces are changed into back-quote characters (ASCII 96) —this

Rational numbers — 13

is a modification of the scheme that is not present in the original
versions of the UU-encode algorithm.
Another way of phrasing this is to say that the encoded 6 bit
characters are mapped into the set:

`!"#$%&'()*+,-./012356789:;<=>?@ABC...XYZ[\]^_
for transmission over communications lines.
A small number of eight bit bytes are encoded into a single line
and a count is put at the start of the line. Most lines in an encoded
file have 45 encoded bytes. When you look at a UU-encoded file
note that most lines start with the letter “M”. “M” is decimal 77
which, minus the 32 bias, is 45. The purpose of this further chop-
ping of the byte stream is to allow for handshaking. Each chunk
of 45 bytes (61 encoded characters, plus optionally a newline) is
transferred individually and the remote host typically acknowl-
edges the receipt of each chunk.
Some encode programs put a check character at the end of each
line. The check is the sum of all the encoded characters, before
adding the mapping, modulo 64. Some encode programs have
bugs in this line check routine; some use alternative methods
such as putting another line count character at the end of a line
or always ending a line with an “M”. The functions in this mod-
ule encode byte arrays without line check characters, and the
decoder routine ignores any “check” characters behind the data
stream.
To determine the end of a stream of UU-encoded data, there are
two common conventions:
⋄ When receiving a line with less that 45 encoded bytes, it signals
the last line. If the last line contains 45 bytes exactly, another
line with zero bytes must follow. A line with zero encoded bytes
is a line with only a back-quote.

⋄ A stream must always be ended with a line with 0 (zero) en-
coded bytes. Receiving a line with less than 45 encoded bytes
does not signal the end of the stream — it may indicate that
further data is only delayed.

Rational numbers
The PAWN programming language supports only one data type:
the 32-bit integer, called a cell. With special operators and a
strong tag, the PAWN language can also do rational arithmetic,
with three decimal digits. To use the “fixed-point arithmetic”,

14 — Rational numbers

your script must include the file rational.inc, for example by
using the following directive:

#include <rational>

The fixed point format used in this library uses three decimal dig-
its and stores the values in two’s complement. This gives a range
of -2147483 to +2147482 with 3 digits behind the decimal point.
Fixed point arithmetic also goes by the name “scaled integer”
arithmetic. Basically, a fixed point number is the numerator of a
fraction where the denominator is implied. For this library, the
denominator is 1000 —therefore, the integer value 12345 stands
for 12345

1000 or 12.345.

In rounding behaviour, however, there is a subtle difference be-
tween fixed point arithmetic and straight-forward scaled integer
arithmetic: in fixed point arithmetic, it is usually intended that
the least significant digit should be rounded before any subse-
quent digits are discarded; but many scaled integer arithmetic
implementations just “drop” any excess digits. In other words, 2/3
in fixed point arithmetic results in 0.667, which is more accurate
than the scaled integer result of 0.666.

To convert from integers to fixed point values, use one of the
functions fixed or strfixed. The function fixed creates a fixed
point number with the same integral value as the input value and
a fractional part of zero. Function strfixed makes a fixed point
number from a string, which can include a fractional part.

A user-defined assignment operator is implemented to automat-
ically coerce integer values on the right hand to a fixed point
format on the left hand. That is, the lines:

new a = 10
new Fixed: b = a

are equivalent to:
new a = 10
new Fixed: b = fixed(a)

To convert back from fixed point numbers to integers, use the
functions fround and ffract. Function fround is able to round
upwards, to round downwards, to “truncate” and to round to the
nearest integer. Function ffract gives the fractional part of a
fixed point number, but still stores this as a fixed point number.

The common arithmetic operators: +, -, * and / are all valid on
fixed point numbers, as are the comparison operators and the ++
and -- operators. The modulus operator % is forbidden on fixed
point values.

USB — 15

The arithmetic operators also allow integer operands on either
left/right hand. Therefore, you can add an integer to a fixed point
number (the result will be a fixed point number). This also holds
for the comparison operators: you can compare a fixed point
number directly to an integer number (the return value will be
true or false).

USB
Model H0430 is equipped with an USB interface. When con-
nected to a workstation, the Starling will present itself as a de-
vice with a virtual COM port. Communication over the USB port
uses the same functions as RS232 communication, but using port
0 (zero) instead of 1 or 2.

16 — File system

File system
The Starling accepts memory cards that are formatted as FAT16
or FAT32. Most SD/MMC or micro-SD cards will already have
been formatted in either of these file systems. FAT16 is more
suitable for smaller capacities (less than 256 MB) while FAT32 is
more appropriate for larger capacities.
The Starling supports subdirectories. It does not support relative
paths, however, as it has no concept of a “working directory”.
All paths are relative to the root. The Starling does not use a
drive letter either —it only supports a single drive with a single
partition.
The path separator may either be a backslash (“\”, used in Mi-
crosoft Windows) or a forward slash (“/”, used in Linux and other
variants of UNIX). These may also be used interchangeably. Note
that the backslash is also the default “control character” in PAWN,
so you need to double it in a standard PAWN string; alternatively,
you can use “raw strings”. See the PAWN “Language Guide” for
details on the control character and (raw) strings.
Paths and filenames are case insensitive for the Starling. This is
similar to Windows and unlike Linux and UNIX.
As an example, the following PAWN strings all refer to the same
file (in the same directory):

"/media/classical.mp3"
"media/classical.mp3" initial slash is optional
"\\Media\\Classical.MP3" double backslashes (normal string)
\"\MEDIA\CLASSICAL.MP3" “raw” string
``/media/classical.mp3'' unpacked string

• General file I/O
Apart from “playing” audio files, the Starling can read and write
text and binary files. This allows capabilities such as writing us-
age information to a “LOG” file, storing settings and/or play files
according to playlists. If the Starling is connected to a USB port
of a computer, such configuration files or playlist files can also
be updated through this connection —without needing to extract
the memory card.
Typically, the files that you wish to read or write are text files, and
these files are probably created or analysed on software running
on desktop computers. Operating systems differ in their conven-
tions for file/path names (as was discussed earlier), as well as the

File system — 17

encoding of text files. The file I/O interface addresses the encod-
ing difference to some extent, in order to be compatible with a
wide range of files and hosts.

Due to memory restraints, the Starling can only hold two files
open at any time for scripting. The file I/O needed for playing
audio files are handled separately. That is, the script can open
two files and still play audio. You can manipulate more than two
files in a single script, but only two files can be open at any time
—before accessing a third file, you must close one of the earlier
two files.

UNIX uses a single “line feed” character to end a text line (ASCII
10), Apple Macintosh uses a “carriage return” character (ASCII
13) and Microsoft DOS/Windows use the pair of carriage return
and line feed characters. Many high-level protocols of the TCP/IP
protocol suite also require both a carriage return and a line feed
character to end a line —examples are RFC 854 for Telnet, RFC
821 for SMTP and RFC 2616 for HTTP.

The file I/O support library provides functions for reading and
writing lines and blocks from/to a file. The line reading/writing
functions are for text files and the block reading/writing func-
tions for binary files. Additional functions allow you to read/write
character by character or or byte by byte; these functions are in-
different for text versus binary files.

The line reading functions, fread and fwrite, check for all three
common line ending specifications: CR, LF and CR–LF. If a LF char-
acter follows a CR character, it is read and considered part of a
CR–LF sequence; when any other character follows CR, the line is
assumed to have ended on the CR character. This implies that you
cannot embed single CR characters in a DOS/Windows or UNIX
file, and neither use LF characters in lines in a Macintosh file.
It is uncommon, though, that such characters appear. The pair
LF–CR (CR–LF in the inverted order) is not supported as a valid
line-ending combination.

The line writing function writes the characters as they are stored
in the string. If you wish to end lines with a CR–LF pair, you should
end the string to write with \r\n.

The line reading and writing functions support UTF-8 encoding
when the string to read/write is in unpacked format. When the
source or destination string is a packed string, the line func-
tions assume ASCII or another 8-bit encoding —such as one of
the ISO/IEC 8859 character sets (ISO/IEC 8859-1 is informally

18 — Filename matching

known as “Latin-1”). Please see the manual “The PAWN booklet
— The Language” for details on packed and unpacked strings.
The block reading and writing functions, fblockread and fblock-
write, transfer the specified number of cells as a binary block.
The file is assumed to be in Little Endian format (Intel byte or-
der). On a Big Endian microprocessor, the block reading/writing
functions translate the data from Big Endian to Little Endian on
the flight.
The character reading/writing functions, fgetchar and fputchar,
read and write a single byte respectively. Byte order consider-
ations are irrelevant. These functions apply UTF-8 encoding by
default, but they can also read/write raw bytes.
Next to data transfer functions, the library contains file support
functions for opening and closing files (fopen, fclose), checking
whether a file exists, (fexist), browsing through files (fexist
and fmatch), deleting a file (fremove), and modifying the current
position in the file (fseek).

Filename matching
The filename matching functions fmatch and fexist support file-
names with “wild-card” characters —also known as filename pat-
terns. The concept of these patterns exists in all contemporary
operating systems (such as Microsoft Windows and UNIX/Linux),
but they differ in minor ways in which characters they use for
the wild-cards.
The patterns described here are a simplified kind of “regular ex-
pressions” found in compiler technology and some developer’s
tools. The patterns do not have the power or flexibility of full
regular expressions, but they are simpler to use.
Patterns are composed of normal and special characters. Normal
characters are letters, digits, and other a set of other characters;
actually, everything that is not a special character is “normal”.
The special characters are discussed further below. Each normal
character matches one and only one character —the character it-
self. For example, the normal character “a” in a pattern matches
the letter “a” in a name or string. A pattern composed entirely
of normal characters is a special case since it matches only one
exactly one name/string: all characters must match exactly. The
empty string is also a special case, which matches only empty
names or strings.

Filename matching — 19

Pattern matching may be case-sensitive or case-insensitive. File-
name matching is case-insensitive, but packet matching is case-
sensitive.

Special pattern characters match any character, int single or
multiple occurrences, or only a selected set of characters. The
special pattern characters are:
? Any

The any pattern ? matches any single character.
* Closure

The closure pattern * matches zero or more non-specific
characters.

[abc] Set
The set pattern [abc] matches a single character in the
set (a, b, c). On case-insensitive matches, this will also
match any character in the set (A, B, C). If the set contains
the] character, it must be quoted (see below). If the
set contains the hyphen character -, it must be the first
character in the set, be quoted, or be specified as the
range ---.

[a-z] Range set
The range pattern [a-z] matches a single character in
the range a through z. On case-insensitive matches, this
will also match any character in the range A through Z.
The character before the hyphen must sort lexicograph-
ically before the character after the hyphen. Sets and
ranges can be combined within the same set of brackets;
e.g. the pattern [a-c123] matches any character in the
set (a, b, c, 1, 2, 3).

[!abc] Excluded set
The excluded set pattern [!abc] matches a single char-
acter not in the set (a, b, c). Case-insensitive systems
also exclude characters in the set (A, B, C). If the set con-
tains the hyphen character, it must immediately follow
the ! character, be quoted, or be specified as the range
---. In any case, the ! must immediately follow the [
character.

{abc} Repeated set
The repeated set is similar to the normal set, [abc], ex-
cept that it matches zero or more occurrences of the
characters in the set. It is similar to a closure, but match-
ing only a subset of all characters. Similar to single char-
acter sets, the repeated set also supports ranges, as in
{a-z}, and exclusions, as in {!abc}.

20 — INI files

`x Quoted (literal) character
A back-quote character ` removes any special meaning
from the next character. To match the quote character
itself, it must be quoted itself, as in ``. The back-quote
followed by two hexadecimal digits gives the character
with the byte value of the hexadecimal number. This can
be used to insert any character value in the string, in-
cluding the binary zero. The back-quote character is also
called the grave accent.

Some patterns, such as *, would match empty names or strings.
This is generally undesirable, so empty names are handled as a
special case, and they can be matched only by an empty pattern.
PAWN uses the zero character as a string terminator. To match
a zero byte, you must use `00 in the pattern. For example, the
pattern a[`00-`1f] matches a string that starts with the letter
“a” followed by a byte with a value between 0 and 31.

INI files
Many programs need to store settings between sessions. For
this reason, the library provides a set of high-level functions for
storing the configuration in an “INI” file. An INI file is a plain
text file where fields are stored as name/value pairs. The name
(called the “key” in the function descriptions) and the value are
separated by an equal sign (“=”) or a colon (“:”) —the colon sep-
arator is an extension of this library.
INI files are optionally divided into sections. A section starts with
a section name between square brackets.
INI files are best known from Microsoft Windows, but several
UNIX and Linux programs also use this format (although the file
extension is sometimes “.cfg” instead of “.ini”). Playlist files in
Shoutcast/Icecast format also use the syntax of INI files.

Usage — 21

Network
This section is only relevant for Starling models that have a net-
work interface, notably model H0440.
The Starling Ethernet interface allows the audio controller to be
connected in a standard Ethernet network, using the TCP/IP pro-
tocol suite. The firmware contains a set of network functions that
you can use from the script.
Apart from a few basic network control messages, no network
functionality is hard-coded in the Ethernet interface. All network
functionality is under control of the script. In its current release,
the network interface supports the TCP/IP protocol suite with the
following functionality:
⋄ TCP/IP core protocols (IP version 4), including the ARP, ICMP
and UDP protocols.

⋄ Support for dynamic configuration through DHCP, and AutoIP
in absence of a DHCP server; lease times are handled.

⋄ Support for multi-cast IP addresses and group memberships.
⋄ For interoperability with Microsoft Windows hosts, NetBIOS
Name Server requests are handled. DNS look-up is also imple-
mented.

⋄ PING transmit & response handling, for network diagnostics.
⋄ SYSLOG client, for sending informational messages.
⋄ Support for the SNTP (network time) protocol for synchroniz-
ing the internal clock (the firmware supports both a time client
and a time server).

⋄ Flexible and extensible SNMP agent support.
⋄ TFTP client and server for simple file transport (as well as a
simple form of “push” streaming).

⋄ HTTP client, for downloading files; HTTP server (single ses-
sion) for status or configuration.

⋄ FTP client and FTP server (single session) for file transfer.
⋄ Shoutcast / Icecast client for streaming MP3 audio from the
network (“pull” streaming).

⋄ RTP protocol for “push” streaming of MP3 audio from the net-
work.

Usage
All scripts that use the network features must include the defi-
nition file (or “header file”) for the network functionality. These
scripts should have the following line near the top of the script:

22 — Low-level interface

LISTING: Initializing the network interface
#include <tcpip>

Before using any of the network functions, the network interface
must be initialized. This is done through the function netsetup.
There are two ways to use netsetup: you can either give only a
host name and have netsetup look up the network configuration
from a DHCP server, or you can supply all the necessary infor-
mation for a “fixed addressing” scheme. Examples are:
LISTING: Initializing the network interface

// host name is MP3-Ctrl; IP address, gateway, DNS and netmask are
// looked up from DHCP
netsetup .hostname = "MP3-Ctrl"

// host name is Starling, IP address = 192.168.0.123,
// gateway = 192.168.0.77, DNS = 192.168.0.99, netmask = 255.255.255.0
netsetup "192.168.0.123", "192.168.0.77", "192.168.0.99",

"255.255.255.0", "Starling"

If desired, the network can be cleaned up again with function
netshutdown. However, this is rarely needed.
When initializing the network using DHCP, note that function
netsetup returns before the DHCP handshaking is complete and
the suitable addresses have been assigned. When the network
status changes —such as DHCP completion, the script receives
the event @netstatus. By implementing this function, the script
can monitor network status, network errors and the progress of
file transfers. The function netinfo returns dynamic and static
network information.

Low-level interface
The network interface provides function for the low-level TCP/IP
interface and for a selected set of the higher level protocols. The
lower level interface allows to send and receive raw messages or
data between the Starling and external devices. Both the connec-
tion oriented TCP protocol and the datagram protocol UDP are
supported. For opening a connection, use the function netcon-
nect and for closing it use netclose. Only TCP connections need
to be opened; UDP messages can be sent and received without
opening a port. For sending a message, use netsend; and incom-
ing data will be received by the event function @netreceive.
If you wish to act as a server, rather than a client, the script
should call netlisten rather than netconnect. TCP connections
that are “listened” to also need to be closed with netclose. For

Low-level interface — 23

UDP servers, you must also call netlisten (unless you wish to
listen to the default port 9930), but there is no need to close the
connection.

Below is a skeleton of a script that implements a simple Telnet
server. A Telnet server sets up a listening connection at port 23
and exchanges text messages with a Telnet client. The messages
that a server receives are usually commands.
LISTING: Telnet server skeleton

#include <tcpip>

@reset()
{
netsetup /* configure the network using DHCP */
}

@netstatus(NetStatus: code, status)
{
switch (code)

{
case NetAddrSet:

{
/* set up a listener on successful initialization */
netlisten 23, TCP
}

}
}

@netreceive(const buffer{}, size, const source{})
{
if (size == 0)

{
/* special case, remote host just connected;
* print a welcome message
*/

netsend "Welcome\r\n# ", _, source
}

else
{
/* normal case, data received */
static line{100}
strcat line, buffer
if (strfind(line, "\r") >= 0 || strfind(line, "\n") >= 0)

{
/* we have received a full line, process it here */
(. . . code omitted . . .)
line[0] = '\0' /* prepare for next buffer */
}

}
}

The script starts with setting up a network. Since the network
is set up without any configuration options, the host must ne-
gotiate an IP address and other options via DHCP (if available)
or AutoIP. When this negotiation ends, the script receives the

24 — High-level interface

@netstatus event with code NetAddrSet and the network config-
uration is complete. At this point, the script can set up a listener
(function netlisten). As a side note: when using fixed address-
ing, network configuration is complete immediately after the call
to netsetup.
Function @netreceive gets an event if data is received. The data
may arrive character by character, or it may arrive is blocks or
text lines (this is how the Telnet protocol works). The @netre-
ceive function must collect the blocks of data and process any
full line that is received. Any response from the script can be
sent via netsend.
Immediately after a remote Telnet client connects, @netreceive
also receives an event, but without any data. It is up to the script
to decide how to respond. For a Telnet server, it is common to
print a welcome message and a prompt.
Not shown in the skeleton is the way to close the connection. If
the remote Telnet client closes the connection, there is nothing
for the script to do: the listening socket will be notified about the
closed connection. If the script must take the initiative to closing
the connection, however, it must call netclose on the socket that
was returned by the earlier call to netlisten. If you wish to ac-
cept a subsequent (new) incoming connection after having closed
the active connection, the script should call netlisten again af-
ter the call to netclose.

High-level interface
The firmware has built-in protocol handlers for the following ser-
vices:
⋄ HTTP client netdownload
⋄ HTTP server @nettransfer
⋄ FTP client netdownload or netupload
⋄ FTP server @nettransfer
⋄ TFTP client netdownload or netupload
⋄ TFTP server @nettransfer
⋄ Shoutcast / Icecast client netstream or play
⋄ RTP client netstream or play
⋄ Syslog client netsyslog
⋄ SNTP client netsynctime
⋄ SNTP server automatic
⋄ ICMP client (ping only) netping
⋄ ICMP server (ping only) automatic

Audio streams — 25

⋄ SNMP agent @netsnmp
⋄ SNMP traps netsnmptrap

To enable a file server, the script must implement the function
@nettransfer. The SNTP and ICMP servers are always enabled,
and they allow a host on the network to query the time of the
Starling device and to “ping” the Starling. Function netdown-
load allows to download from HTTP, FTP and TFTP servers. The
function gets the protocol to use from the URL.

When you call the functions netsynctime or netping, the reply
of the remote host is received as an event, through @netstatus.
The functions netsynctime and netping are asynchronous: they
return immediately (before a reply from the remote host is re-
ceived).

Audio streams
The Starling can play audio that is streamed to the device. It
supports three protocols for streaming: direct streaming via RTP,
buffered streaming with progressive HTTP (e.g. Shoutcast), and
buffered streaming via standard HTTP.

• Progressive HTTP versus standard HTTP
Progressive and standard HTTP streaming have are similar in
that the script uses functions play or netstream in both cases
and that a stream queue must be prepared in both cases.

There are also important differences. To begin with, the server
set-up is different: you need a HTTP server for standard HTTP
streaming and a Shoutcast/Icecast server for progressive HTTP.
Standard HTTP streams play MP3 files over the network, from
start to finish —you do not have the option start at an arbitrary
position in the file. The “standard” HTTP streaming is therefore
not suitable for live streaming.

The main advantages of standard HTTP streaming are that HTTP
servers are more readily available (e.g. in “shared hosting” ac-
counts) than streaming audio servers, and that standard HTTP
streaming allows the client (i.e. the “web radio”) to choose the
tracks to play; a progressive HTTP stream plays back what the
server pushes into the channel.

26 — Audio streams

• Streaming with progressive HTTP
The most common streaming method is a variation on the proto-
col used by all web browsers (Mozilla Firefox, Internet Explorer,
Opera, etc.): the HTTP protocol. For MP3 streaming, ubiquitous
stream servers are Shoutcast and Icecast, both of which use the
progressive HTTP protocol.

Progressive HTTP is more suitable for streaming over a WAN or
the Internet because it is buffered in a “stream queue”. You can
optionally also monitor the queue status to decide when to start
playing the stream.

Like standard HTTP, progressive HTTP is a “pull” protocol: the
Starling initiates the connection to a stream server.

You connect to a stream with the function netstream or function
play. Both functions start filling the stream queue and both start
playing audio from the stream queue when it reaches a certain
level. Function netstream allows you to specify how many kilo-
bytes must be in the stream queue before starting to play the
stream (function play fixes this at 128 KiB). In addition, net-
stream can buffer (or re-buffer) a stream while audio is still play-
ing —play will stop audio output before starting up the stream.

With netstream, you can select at which queue level you wish to
start playing the stream. When youwait until the stream queue is
256 KiB full, you are relatively insensitive to network stalls (due
to congestion or bad reception), but there is a high “latency” be-
tween the connection to the stream and the audio actually com-
ing out of the speakers. This latency is because the queue needs
to be filled first. You can choose to reduce the latency by starting
to play the stream at a queue level of 32 KiB, at the risk that a
network stall causes a gap in the audio or a disconnection from
the stream.

The number of seconds in the stream queue is a function of the
amount of data in the queue and the bit rate. At the commonMP3
bit rate 128 kb/s, the player processes 16,000 bytes per second.

A Shoutcast server will typically enter “burst mode” immediately
after establishing a connection. In burst mode, the server sends
up to 256 KiB as quickly as possible, and then switches to stream
mode where the transfer speed is equivalent to the audio bit rate.
Although newer Icecast servers also use burst mode, an older
Icecast server streams at the speed of the audio bit rate from
the very beginning. If you know that you are connecting to an old

Audio streams — 27

Icecast server, you may wish to fill the queue to 256 KiB before
starting to play the stream. Similarly, for a Shoutcast server, you
may start to play at a queue fill level of 64 KiB, because the queue
will grow quickly in burst mode. If you do not know what server
the device connects to, waiting until a fill level of 128 KiB is a
fair trade-off: it is a safe margin for an Icecast server, and not
cause a great delay for a Shoutcast server —it fills the queue to
this level quickly anyway, because of burst mode.

With function play, all that is required is that you pass in an
URL to the stream. The URL prefixes “http://” and “icy://” are
equivalent, except that the default port number for “http://” is
80 and that for “icy://” is 8000.
LISTING: Streaming with HTTP

play "icy://224.82.71.81:8080/"

The Starling supports meta-data in the stream. This meta-data is
textual data, usually containing the title of the song and the name
of the artist or the band, that the streaming server inserts into
the audio stream at regular intervals. When a stream is playing,
a script can retrieve that data from the function trackinfo.

• Restarting a HTTP stream
The netstream function is more specialized than function play for
streaming: it has a parameter for the amount of data (in KiB) in
the stream queue before playing starts and it can start buffering
a stream while audio is still playing. The previous section al-
ready discussed the relation between the queue fill level and au-
dio latency. This section focuses on the second feature —which is
particularly useful for reliable streaming from progressive HTTP
servers (Shoutcast/Icecast servers).

HTTP is a simple protocol on top of TCP. There are no particular
reasons why a TCP connection may not be kept open indefinitely,
but the protocol was not designed for continuous never-ending
transfers. In practice, TCP connections get dropped on occasion.
This may happen, among other reasons, because of server load
or time-outs in NAT routers, a gateway in the middle (a “hop”)
that goes off-line, or a host switching to a different network (this
happens with mobile devices that are “on the road”).

When the Starling is playing a stream and the connection for
the stream gets disrupted, the Starling will continue to play the
remainder of the audio in the stream queue. No new data will

28 — Audio streams

arrive into the queue, however. The only way to “fix” a broken
connection is to set up a new connection and restart the stream.
The advantage that netstream has to play in this situation is that
netstream can continue to play the remainder of the streamwhile
the stream is restarted. In other words, netstream avoids (or at
least minimizes) a silent gap during the re-opening of the stream.
The following code snippet illustrates a the concept:
LISTING: Monitoring and restarting a HTTP stream

const StreamUrl[] = "icy://192.168.1.22"
const StreamBufferLimit = 128

@main()
{
netsetup
settimer 1000
}

@timer()
{
static StartDelay = 0
const LowBufferLimit = StreamBufferLimit / 4

if (netinfo(LinkStatus) != 0 && netinfo(GatewayIP) != 0)
{
if (StartDelay == 0 && netinfo(StreamQueue) < LowBufferLimit)

{
StartDelay = 10
netstream StreamUrl, StreamBufferLimit
}

}

if (StartDelay > 0)
StartDelay--

}

The script initializes a timer. The event function @timer checks
whether network is ready. This is needed becaus the script con-
nects with DHCP, and the handshake takes some time to com-
plete.∗ The first time that it drops through the first “if” that
checks the LinkStatus and the GatewayIP, the fill level of the
stream queue is zero bytes. It will therefore drop through the
second “if” as well and start the stream. It also sets a local vari-
able, StartDelay, because on the next timer event —one second
later, the stream has just started and the stream queue may not
have received the first 32 KiB of the stream data yet.† We should

∗ An alternative would be to implement the @netstatus function and wait for
the NetAddrSet event, see page 23.

† Since StreamBufferLimit is defined at 128 KiB, StreamBufferLimit divided
by 4 is 32 KiB.

Audio streams — 29

give the stream a chance to fill the queue. Hence, the script
makes sure that it does not restart a stream within 10 seconds
since the last start.
When the stream is playing, the queue fill level will normally stay
relatively stable, and that level will be either close to the queue
limit set in function netstream, or it may be higher if the stream-
ing server uses a burst mode to a higher fill level. If the stream
queue fill level drops below 25% of the level set in netstream,
the connection probably has a problem. The script detects this
situation and restarts the stream.
If a reconnection succeeds, the Starling picks up the stream from
the server again. If the reconnection was quick enough to avoid
the stream queue to empty completely, there will be no gap in
the audio (i.e. no silent period). However, due to the buffering
scheme of progressive HTTP streaming, the position in the track
where the stream is picked up will not match precisely the posi-
tion where the connection was broken. As a result, there will be
a glitch in the audio shortly after the successful reconnection.
Restarting a stream is only useful when the server uses burst
mode. If not using burst mode, the server transmit data to the
stream queue at the bit rate of the audio, which means that the
stream queue cannot grow and play at the same time. Restart-
ing a stream is also only useful for progressive HTTP streaming:
when restarting a standard HTTP stream, the stream restarts
from the beginning of the track, which is not what you want.

• Tips for progressive HTTP streaming
⋄ To keep playing a local track while the stream queue fills up,
use netstream instead of function play.

⋄ To detect a disconnection from the stream, implement the func-
tion @audiostatus and watch for the “Stopped” signal. If this
signal arrives and you were streaming, the stream was discon-
nected.

⋄ While playing a stream, you can also monitor the fill level of the
stream queue with function netinfo and call netstream on the
same stream again when it drops below a certain level. Doing
this refreshes the stream.

⋄ To signal a failed connection to a stream:
a) check the return value of netstream; it returns false if it
cannot connect to the server;

30 — Audio streams

b) let @netstatus catch the event NetStreamBuffer with sta-
tus 0 (stream queue 0% full), which means that the remote
stream server replied with an error or reset the connection.

⋄ To monitor the level to which the stream queue is full, call net-
info with code StreamQueue.

⋄ To abort a stream, call netstream(""). This stops the stream.
The audio will continue playing for a few seconds, because
there is likely still data in the stream queue. You can wait until
it runs out, or call the function stop.

• Streaming with RTP
The “Real-time Transport Protocol” (RTP) is designed for quick
transfer of multimedia data, where transfer speed is more impor-
tant than integrity of the data. Occasionally, a packet with audio
information may get lost with RTP. On the other hand, latency
is much lower than in reliable transport protocols such as HTTP
and the protocol overhead is lower too —which also reflects in
lower bandwidth requirements. RTP is furthermore a suitable
protocol for multi-casting, which may significantly reduce band-
width requirements.
There are various devices that can stream audio data onto the
network using RTP. A PC application (onMicrosoft Windows) that
creates an RTP stream from MP3 tracks is “LiveCaster”.
RTP is a non-buffered “push” protocol. To play an RTP stream,
the script can call the standard function play with an RTP URL
instead of a filename. Alternatively, the script can call netstream
for more control. For example, the following snippet starts play-
ing the stream from the server at “224.82.71.81” on port 56952:
LISTING: Streaming with RTP

play "rtp://224.82.71.81:56952/"

No standard port is defined for the RTP protocol, which is why
you usually have to give an explicit port number. If you omit the
port, the Starling uses port 5004 for RTP packets.
The controller automatically detects multi-cast addresses and
sends out a multi-cast group announcement for the service if
needed. If the remote address is an unicast address, no group
announcement is sent.
The Starling controller is compatible with the Barix extension
of the RTP protocol, where the host has to request the stream

Monitoring and configuration with SNMP — 31

from the server first. The Barix RTP variant is often better able
to get audio data through a NAT router than the standard RTP
protocol, but it may be limited to unicast applications. To use
the Barix RTP variant, specify the protocol prefix “brtp://” in
the play command (instead of “rtp://”).

Transferring files
The script supports the HTTP protocol for downloading files from
a web server and the FTP and TFTP protocols for downloading
and uploading files from and to a FTP/TFTP servers. Authenti-
cated file transfers are only supported on the FTP protocol. The
TFTP client in the Starling requires a server that supports TFTP
options, notably the “transfer size” option. Modern TFTP servers
support options.
To initiate the file transfers, the script uses the functions net-
download and netupload. These functions are asynchronous: the
functions return before the file transfer is complete. When the
transfer completes, the script receives an event via the function
@netstatus —the event codes are NetHttpDone, NetFtpDone and
NetTftpDone.
These functions initiate the file transfer and thereby act as a
“client”. The script can also wait for an incoming request (from
a remote host) to transfer a file, by setting up a server. See the
section “HTTP, FTP and TFTP servers” on page 34 for this func-
tionality.

Monitoring and configuration with SNMP
SNMP stands for “Simple Network Management Protocol”. This
protocol allows remote monitoring and configuration of network
devices. For this to work, the network device must be equipped
with an SNMP agent. To implement an SNMP (version 1) agent
in the Starling, you need a script that contains the @netsnmp func-
tion and a MIB file.
With SNMP, a manager sends out queries at regular intervals
to request the status of one or more variables of one or more
devices. The A query may also contain a new value for a variable.
Each device contains an SNMP agent that receives the queries
and responds to it. This is the task of the @netsnmp function:
return and optionally change values of requested parameters.

32 — Monitoring and configuration with SNMP

SNMP works with “communities”, where the name of a commu-
nity functions as a password. The SNMP browser sets the com-
munity name and the SNMP agent decides whether that commu-
nity name is given read or write access —or neither. See function
@netsnmpcfg to set community strings for the SNMP agent in the
Starling.
For reasons of efficiency, SNMP exchanges all device variables as
numbers. So 1 may stand for “device status” and 12 for “current
volume setting”. An SNMP browser or SNMP manager that you
use on your workstation to control the device shows the same
variables with their names. To map “magic” numbers to human-
readable names (and vice versa), the SNMP browser/manager
needs a MIB file.
The MIB (“Management Information Base”) file is a plain text
file that contains the definitions of the settings that the Starling
controller can return. These settings depend on the script. You
can build a script that allows a user to select tracks, set volume
and balance and other audio parameters, or build a script that
allows a user to query information such as up-time, network traf-
fic and recent status changes. The script, and in particular the
event function @netsnmp, determine how the Starling controller
responds to queries and which requests it supports.
Obviously, the definitions in the MIB file must be in conformance
with the implementation of the @netsnmp function in the script.
Part of the MIB file needed for the Starling is fixed, but another
part is flexible because the scripting capabilities of the Starling
are flexible too.

• The MIB file
The templateMIB file, onto which you will base your specificMIB
files is below. You will find this template MIB file on the CD-ROM
that comes with the product (in the “examples” subdirectory).
LISTING: Template MIB file

--
-- A template SNMP MIB file for use with the Starling
--
-- Copyright (c) 2007-2012 ITB CompuPhase
--

-- ==
-- This part should remain unchanged
-- ==
COMPUPHASE-MIB DEFINITIONS ::= BEGIN

IMPORTS

Monitoring and configuration with SNMP — 33

enterprises, IpAddress, Counter, TimeTicks
FROM RFC1155-SMI

OBJECT-TYPE
FROM RFC-1212;

DisplayString
FROM RFC-1213;

compuphase OBJECT IDENTIFIER ::= { enterprises 28388 }
products OBJECT IDENTIFIER ::= { compuphase 1 }
starling OBJECT IDENTIFIER ::= { products 21 }

-- ==
-- The part below is specific to the application, and it must be
-- in conformance with the script
-- ==

-- Add your definitions here...

-- ==
-- End of the application-specific definitions
-- ==

END

The definitions in the MIB file are written in “Abstract Syntax
Notation One”, or ASN.1. Information on the ASN.1 syntax can
be found in various books and on the Internet, including tutorials
and the original definitions in RFCs.
When writing the MIB file, please note that the implementation
of the SNMP agent in the Starling only supports whole numbers
and (octet/character) strings. The Starling does not support “se-
quence” types for user data. In the MIB file, you may also use
derived types as Counter, Gauge, TimeTicks and IpAddress, which
are basically different representations of integer values.
Below is a very brief implementation of the @netsnmp function. It
handles only two fields: the title of the track currently playing
(this is a read-only) property and the volume level —a read-write
property.
LISTING: Minimal SNMP agent

@netsnmp(item, data[], size)
{
switch (item)

{
case 1: // title, read-only

trackinfo TrackTitle, data, size

case 3:
if (size == 0)

setvolume strval(data)
else

{
new value
getvolume value

34 — HTTP, FTP and TFTP servers

strformat data, size, true, "%d", value
}

default:
return false

}
return true
}

The definitions to put in the MIB file are below (these definitions
must be merged in the template MIB file, see page 32):

LISTING: MIB file extract, for the above minimal SNMP agent
title OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
DESCRIPTION "Track title"
::= { h0420 1 }

volume OBJECT-TYPE
SYNTAX INTEGER(0..100)
ACCESS read-write
STATUS mandatory
DESCRIPTION "Audio volume (0..100)"
::= { h0420 3 }

HTTP, FTP and TFTP servers
To enable the built-in HTTP, FTP and/or TFTP servers, the script
must implement the @nettransfer function. The HTTP, FTP and
TFTP protocols are file transfer protocols. The FTP and TFTP
servers allow read and write requests, while the HTTP server
only supports read requests (i.e. “downloads” or page views).
Only the FTP server requires a log-in before allowing file trans-
fers. The script may optionally also implement the @netstatus
function to receive an event on the completion of the transfer.

To have the script initiate the file transfer itself, rather than wait
for an incoming request, see section “Transferring files” on page
31.

The purpose of the @nettransfer function is to let the script ei-
ther allow or refuse the request. In the case of a HTTP server,
the script may also process any parameters on the URL (before
acknowledging or cancelling the transfer).

HTTP, FTP and TFTP servers — 35

• TFTP server
The following implementation of @nettransfer enables the TFTP
server, but cancels any HTTP requests that it receives. Read
and write requests are accepted in the “user” subdirectory, and
cancelled for other areas on the memory card of the Starling.
LISTING: Handling TFTP requests

bool: @nettransfer(path{}, NetRequest:code, socket)
{
/* HTTP requests are denied (only accept HTTP requests) */
if (code != NetTftpGet && code != NetTftpPut)

return false

/* only up/downloading to/from "user" is allowed */
if (strcmp(path, "user/", true, 5) != 0)

return false

return true /* allow this transfer */
}

TFTP has no concept of a “current directory”. Instead, the full
path of the filename to “put” or to “get” must be specified. Some
TFTP clients allow you to type in only a single name, for both
the source and the destination. This is inconvenient if you wish
to transfer a file to or from a different directory on the PC than
on the memory card of the Starling. A free TFTP client that al-
lows separate paths and names for the local and remote hosts is
TFTPD32 by Philippe Jounin.

The TFTP server in the Starling requires a client that supports
TFTP options, notably the “transfer size” option. Modern TFTP
clients support options, but the command line “tftp” utility that
comes with Microsoft Windows does not. For a free alternative
(which supports options), see the TFTP command line client by
WinAgents.

• HTTP server
From the viewpoint of the PAWN script is a web server very sim-
ilar to a TFTP server. For a HTTP server, you also need to im-
plement the @nettransfer function, but now enabling the HTTP
requests instead of (or in addition to) the TFTP requests.

HTTP clients, such as a browser like Mozilla Firefox or Microsoft
Internet Explorer, may pass parameters to a server accompany-
ing the request. The Starling supports URL parameters on “GET”
requests and passes the full URL to the @nettransfer function.
In @nettransfer, you can process and save these parameters.

36 — HTTP, FTP and TFTP servers

The browser may then obtain the processed results with a sub-
sequent file transfer or through an embedded request using the
XMLHttpRequest method supported by most browsers.
LISTING: Handling HTTP requests

bool: @nettransfer(path{}, NetRequest:code, socket)
{
if (code != NetHttpGet)

return false /* deny non-HTTP transfers */

/* get and save any parameters */
new idx = strfind(path, "?");
if (idx >= 0)

{
new params{100}
strmid params, path, idx + 1
/* write the parameter in a file (without further processing)

*/
new File: handle = fopen("params.txt", io_write)
if (handle)

{
fwrite handle, params
fclose handle
}

}

return true /* allow this transfer */
}

The script presented above saves any parameters into a text file,
without processing the parameters in any way. If you do not plan
to handle URL parameters, you can remove the entire section —
making the @nettransfer as simple as:
LISTING: Handling HTTP requests ignoring any URL parameters

bool: @nettransfer(path{}, NetRequest:code, socket)
return (code == NetHttpGet) /* allow HTTP, deny TFTP */

• FTP server
Like the HTTP and TFTP servers, the FTP server passes through
the @nettransfer function. In the implementation of this func-
tion in the PAWN script, it must respond to several FTP requests.
The FTP protocol has a login handshake, and it allows you to
set one or more usernames and passwords for all users that you
wish to grant access. Only one user can be connected to the FTP
server at a time.

After login, the @nettransfer function may also allow or block
any file transfer command (upload or download) as well as file
deletion. In addition, the FTP server supports the SITE command,
which you can use to send arbitrary commands to the script from

HTTP, FTP and TFTP servers — 37

within an FTP client (not all FTP clients support the SITE com-
mand).
LISTING: Handling FTP requests

bool: @nettransfer(path{}, NetRequest:code, socket)
{
switch (code)

{
case NetFtpLogin:

{
/* read the username:password string from an INI file */
new ftplogin{30}
readcfg .key="ftplogin", .value=ftplogin, .pack=true

/* accept a matching login, or accept all logins if
* no username:password was set in the INI file
*/

return strlen(ftplogin) == 0 || strcmp(path,ftplogin) == 0
}

case NetFtpGet,
NetFtpPut,
NetFtpDel,
NetFtpMove,
NetFtpList:
return true /* accept all file commands */

case NetFtpCmd:
if (strcmp(path, "RESET") == 0)

{
reset /* host command = "SITE RESET" */
return true
}

}

return false /* deny all non-FTP transfers */
}

38 — Development and debugging

Development and debugging

Reducing memory requirements
The Starling has 16 KiB of memory available to scripting. This
limit is declared in the configuration file for themodel (h0430.inc
or h0440.inc), so that the PAWN compiler is aware of this limit and
can (hopefully) verify that the script fits into the memory. If the
PAWN compiler complains that the script is too large, you must
find a way to reduce the size of the script after compilation.

⋄ If performance is not critical, switch on code overlays. Over-
lays set a maximum size of 4 KiB per function, but the number
of functions is unlimited. To enable code overlays, set the op-
tion “-V” on the command line for the PAWN compiler, or check
the “overlay code generation” option in the Quincy IDE.

⋄ Some space will be gained if you compiled without run-time
checks. To do so, add the option “-d0” on the command line for
the PAWN compiler, or set the “debug level” option to zero in the
Quincy IDE. This removes array bounds checks and assertions.

⋄ Make sure that the optimization level is set to “3”; the PAWN
compiler generates more compact code. The relevant option
is “-O3”. Note that this option is set by default.

⋄ See if there is similar code repeated several times in the script.
Such code could then be put in a separate function, and this
function is then re-used for every routine needing the code.

⋄ At a smaller scale, if the same value gets calculated several
times in a function, declare instead a new variable that holds
this calculated value. The academic terminology for replacing
common sub-expressions with helper variables is strength re-
duction.

⋄ Verify the stack usage (use the option “-v” of the compiler;
optionally use “-r” to get a detailed report). If the compiler re-
ports that there is ample unused stack space, you may reduce
the size of the stack with the compiler option “-S” or adding a
“#pragma dynamic” in your script —the latter is probably more
convenient, as you do not have to remember to add an option
to the command line at each compile.

Finding errors (debugging) — 39

⋄ If you use strings, make sure that these are packed strings.
Packed strings take less space on the stack and/or heap. Literal
strings also take less space in the “literal pool” of the script.

⋄ When a function has an array parameter (such as a string) with
a default value, declare the parameter as “const” if possible.
With a non-const parameter, a copy of the default value of the
parameter must be made on the stack, because the function
should not be able to change the default parameter. Declaring
the parameter as const allows the compiler to avoid this copy.

If a script still does not fit in the available memory, it must be
split into separate scripts, where each script performs a different
task. The scripts can switch to other scripts (and thereby to other
tasks) through the exec function.

Finding errors (debugging)
If a script behaves in an unexpected (or undesired) way, there
are various methods to see which code is responsible for the be-
haviour.

If you have an RS232 cable attached to the Starling, you can
send messages and values of variables over the serial line. These
messages can then be inspected while the program is running.
See the functions setserial and transmit in this reference for
setting up a serial connection on pages 107 and 131 respectively.

The PAWN toolkit comes with a source level debugger that sup-
ports “remote debugging”, meaning that the debugger controls
the script running on the Starling from a host PC. The remote
debugging facility also uses the serial line, but it sets it up auto-
matically. To use remote debugging, follow these steps:

⋄ If you are using the Quincy IDE, make sure that the IDE is
configured for remote debugging. In the “Options. . . ” dialog
(under the “Tools”menu), choose the TAB-page “Debugger” and
select the serial port to use (e.g. COM1:).

⋄ Compile the script with full debug information (compiler option
“-d2” or select “debug level” 2 from the Quincy IDE) and store
the compiled script on the memory card.

⋄ Also keep the compiled script and its source code on the local
PC. It is assumed that the script resides on a local hard disk of

40 — Transferring scripts over RS232 or USB

your PC while you edit and build it, and that the resulting com-
piled script (the “.amx” file) is then transferred to the memory
card.

⋄ If you are using the Quincy IDE, you have to set a breakpoint in
the source code, otherwise the IDE will not launch the debug-
ger. Once the breakpoint is set, select the option “Run” from
the menu/toolbar (or press F5).

If not using the Quincy IDE, launch the PAWN debugger sepa-
rately, with the filename of the compiled script and the option
“-rs232”. If the compiled script is called “STARTUP.AMX”, the
command line is:

pawndbg startup.amx -rs232
This assumes that you are using the first serial port (“COM1:”)
on the host PC. If you use the second serial port, use:

pawndbg startup.amx -rs232=2
on Microsoft Windows and

pawndbg startup.amx -rs232=1
on Linux or UNIX. Note that the serial ports are numbered from
zero in Linux —ttyS1 is what Microsoft Windows would call
COM2:.

⋄ Insert the memory card in the Starling and optionally reset (or
power-cycle) the device. The debugger should now display the
first line of function @reset.

When the Starling is reset and the script that it loads has debug
information, it waits for a debugger to connect, with a timeout of
one second. If no debugger connects, the Starling runs the script
without debugger support. This is why it is advised to start the
debugger before resetting the Starling.

After the script has been fully debugged, you will want to recom-
pile it without debugging support: it avoids the start-up delay
(when the Starling polls for a debugger to connect), and it re-
duces the size of the script and increases performance.

Transferring scripts over RS232 or USB
The script for the Starling must reside on the memory card (in
the root directory). For simple scripts, it is easy to write the
script, compile it and copy the resulting “.amx” onto the memory
card. To copy the file, you can use a common “card reader” that
branches on an USB port.

Transferring scripts over RS232 or USB — 41

During development and debugging, with many “write/compile/
copy/test” cycles, constantly swapping thememory card between
the Starling audio player and the card reader on the PC may be-
come a nuisance. An alternative is to transfer the .amx file over
a serial line. For Starling controllers that have a USB connec-
tion, this is used for file transfer. For Starling controllers that
lack a USB connection, the second serial port is reserved for file
transfer.
The function to transfer files over the serial line works through
the debugger or from inside the Quincy IDE. The debugger/IDE is
able to synchronize with the Starling audio player if the compiled
script contains debugging information, or after a reset.
The first step is to compile the script as usual. If you are using
the Quincy IDE, choose then option Transfer to remote host from
the Debug menu. If not using the Quincy IDE, launch the debug-
ger with the compiled script name, as described in the previous
section. Then, you need to reset the Starling, either by pressing
the “RESET” switch on the board or by power-cycling the device.
With the Quincy IDE, the transfer will now proceed automati-
cally, but with the stand-alone debugger, you will need to give
the command “transfer” to send the latest release of the .amx
file to the Starling, which will then write it onto the memory card.
After the copy is complete, the Starling will automatically restart,
and the debugger restarts too.
If transferring the compiled script is the only purpose of launch-
ing the debugger, you may also give the transfer command as
a command line option. For instance, the line below starts the
debugger, transfers the file and then exits:

pawndbg transfer.amx -rs232=1 -transfer -quit

Especially for purposes of uploading compiled scripts, it can be
useful to have the Starling reset on a command that comes over
the same RS232 line —because the Starling audio player only
picks up a debugger synchronization attempt within a second af-
ter a reset. A convenient hook is in the example below: the @re-
set function sets up the serial port with a Baud rate of 57600 bps
and the @receive function responds to the ’¡’ character (ASCII
161). These Baud rate and synchronization command are the
same as used by the PAWN debugger, meaning that in attempting
to synchronize with the debugger support in the Starling audio
player, the PAWN debugger will reset the audio player if it was
not polling for the debugger.

42 — Transferring scripts over RS232 or USB

LISTING: Reset the Starling player on receiving a ’¡’ on the RS232
@reset()

{
setserial 57600
}

@receive(const data{}, length, port)
{
if (data{0} == '\xa1')

reset
}

@audiostatus — 43

Public functions

@alarm The timer alarm went off

Syntax: @alarm()

Returns: The return value of this function is currently ignored.

Notes: The alarm must have been set with setalarm.

After firing, the alarm is automatically reset.

See also: @timer, setalarm

@audiostatus The audio status changed

Syntax: @audiostatus(AudioStat: status, decoder)

status The new audio status.

decoder Identifies the decoder that is the source
of the event. On devices with only a sin-
gle decoder, this parameter is always 1.

Returns: The return value of this function is currently ignored.

Notes: The status is one of the following:
Stopped (0)

The audio is stopped.
Paused (1)

The audio is paused and can be resumed.
Playing (2)

The audio is currently playing.
FadeCompleted (5)

The volume fade (started with setvolume) has
completed.

In special circumstances, a “Stopped” notification
may be received without first receiving a “Playing”
signal. This happens in particular when a file that
was passed to function play did not contain valid au-
dio data.

See also: audiostatus, play, pause, resume

44 — @eject

@eject The card is removed
Syntax: @eject()

Returns: The return value of this function is currently ignored.
Notes: This function is called when the memory card is re-

moved (“ejected”). After completion of the @eject
function, the Starling controller performs a reset in
approximately one second.
If you need to store data or status information on
eject, such information must be stored in the config-
uration area of the of the Starling itself —see store-
config. You cannot write device data or status infor-
mation to the memory card (because it is ejected).
When the script is compiled with overlay support,
the @eject function should only call native functions.
Script functions may not be present in the overlay
cache at the time of the eject, and they can no longer
be loaded (because the card is ejected).

See also: storeconfig

@input A digital pin changed
Syntax: @input(pin, status)

pin The pin number, see the notes.
status The new logical level (0 or 1).

Returns: The return value of this function is currently ignored.
Notes: Some models of the Starling controller have 8 I/O

pins (e.g. model H0440), other models have 16 I/O
pins. On models with 8 I/O pins, the pin parameter
is a value between 0 and 7 for the normal I/O pins; on
models with 16 I/O pins, the pin parameter is a value
between 0 and 15. The “AUX” button, if present, is pin
number 17.
The on-board switch “FUNC” is assigned pin number
16. Some models of the Starling have an additional
“AUX” switch, which has pin number 17. Note that
the FUNC and AUX switches adjust the amplifier gain

@netreceive — 45

on models with a power amplifier. Inputs 16 and 17
(for the FUNC and AUX buttons) are always configured
as inputs. Note that the AUX button is only available
on model H0430.

Only pins that are configured as “input” can cause
input events. See configiopin for configuration. On
start-up, all pins are pre-configured as inputs. On-
board switches are hard-wired as inputs.

This function is invoked when the logical level of an
input pin changes. The function getiopin may be
used to read the active status of a pin.

See also: configiopin, getiopin

main Script entry point

Syntax: main()

Returns: The return value of this function is currently ignored.

Notes: main is an alternative name for function @reset.

See also: @reset

@netreceive A data packet is received

Syntax: @netreceive(const buffer, size, const source)

buffer The data that was received. Depending
on the protocol, this may be text or nu-
meric data. See the notes, below, for de-
tails.

size The size of the data in buffer, in bytes.
This parameter may be zero on a “pas-
sive connect”, see the notes, below.

source For UDP connections, this parameter has
the IP address and the port number of
the sender, with a colon in between (for
example: “192.168.1.9:9930”). For TCP
connections, it has a “#” followed by the
socket number returned by netlisten.

46 — @netsnmp

Returns: The return value of this function is currently ignored.
Notes: If the received data is ASCII text, parameter buffer

holds a packed string. Use the size parameter to
determine the number of bytes of data in the buffer;
text in buffer is not zero-terminated. If the received
data is not text, it is assumed to consist of values that
are sent in “network byte order” (Big Endian).
Before being able to receive packets, the script must
call netconnect to open a connection, or call netlis-
ten to allow a remote host to connect.
When the script is listening on a TCP socket and a
remote device connects to this socket (i.e., a passive
connect), the @netreceive function is called with the
size parameter set to zero. A script can use this spe-
cial case to send a greeting message to the remote
host on connect.
This function is available on Starling models with an
Ethernet interface.

Example: See the Telnet server (skeleton) on page 23.
See also: netlisten

@netsnmp An SNMP request is received
Syntax: bool: @netsnmp(item, data[], size)

item The numeric identifier of the item.
data Either the new data to write to the item

(SET request), or the buffer to read the
current value of the item into (GET re-
quest).

size If zero, this is a SET request and data is
a zero-terminated string that holds the
new data for the item. If non-zero, this is
a GET request and this parameter holds
the size of the data array in cells.

Returns: The function should return true if it can fulfil the
request and false on failure. In particular, if item
has an unknown or unsupported value, this function
should return false.

@netstatus — 47

Notes: The same function is used for querying parameters
and for setting them. The distinction between the
two operations is in the size parameter. If it is zero,
the request is a SET operation; otherwise it is a GET
operation.

The contents of parameter datamay be a text string,
a number or an IP address, depending on the defi-
nition of the item. For SET requests, numbers and
IP addresses are encoded as text strings. For GET
requests, the script should store the requested in-
formation in parameter data as a text string.

The definition of the type of each item is in the MIB
file. It is the responsibility of the programmer to
have a matching MIB file to the implementation of
this @netsnmp function.

This function is available on Starling models with an
Ethernet interface.

Example: See the code and associated MIB snippets on page
33.

See also: netsnmptrap

@netstatus Network status changed/event occurred

Syntax: @netstatus(NetStatus: code, status)

code The code of the event or status change;
it is one of the following:
NetLink (0)

Physical link status; parameter sta-
tus is 0 (disconnected) or 1 (con-
nected).

NetPing (1)
Ping reply (see netping); parameter
status is ping sequence number.

48 — @netstatus

NetAddrSet (2)
The IP address is set; this code is
useful for DHCP configuration be-
cause is signals that the network
is ready for sending and receiving
packets; parameter status holds
the IP address as a 32-bit integer
value.

NetTimeSync (3)
The Starling clock synchronized
with a remote host (this time is in
UTC, you may need to adjust the
clock for the time zone or daylight
saving time); parameter status is 0.

NetLeaseExp (4)
The DHCP lease is expired or the
link-local lease is expired; parame-
ter status is 0.

NetTftpDone (5)
TFTP transfer has finished; parame-
ter status is 1 on success and 0 on
failure. A failure may also indicate
a transfer that has been aborted (by
the user or by the remote server).

NetHttpDone (6)
HTTP transfer has finished; param-
eter status is 1 on success and 0
on failure. A failure may also indi-
cate that a transfer has been can-
celed (by the user or by the remote
server).

NetStreamQueue (7)
Stream queue mark reached; pa-
rameter status is the level (in kilo-
bytes), it is zero if the server re-
jected the stream request.

NetFtpDone (8)
FTP transfer has finished; parame-
ter status is 1 on success and 0 on
failure. A failure may also indicate
a transfer that has been aborted (by
the user or by the remote server).

NetFtpStart (9)
FTP transfer has started; parame-

@nettransfer — 49

ter status is the socket for the data
transmission (FTP uses two sockets
to transfer a file, a command socket
and a data socket).

NetHttpStart (10)
HTTP transfer has started; param-
eter status is the socket for the
transmission.

NetRscMoved (11)
The server replies that the resource
that was requested, has moved.
The URL that it was moved to, can
be obtained with a call to netinfo.

status The value associated with the status, its
meaning depends on the event code.

Returns: The return value of this function is currently ignored.
Notes: Link-local addresses have a fixed lease of 10 min-

utes. DHCP leases depend on the configuration of
the DHCP server.
This function is available on Starling models with an
Ethernet interface.

Example: See the Telnet server (skeleton) on page 23.
See also: netclose, netinfo, netping, netsetup, netstream,

netsynctime

@nettransfer A file transfer request was received
Syntax: bool: @nettransfer(path, NetRequest: code,

socket)

path The full path to the requested file, for
HTTP this may include parameters. The
script may modify this parameter, (e.g.
for redirecting a file).

code The code of the event or status change;
it is one of the following:
NetTftpGet (1)

The remote host requests to receive
this file from the Starling, using the
TFTP protocol.

50 — @nettransfer

NetTftpPut (2)
The remote host requests to trans-
mit this file to the Starling, using
the TFTP protocol.

NetHttpGet (3)
The remote host requests to receive
this file from the Starling, using the
HTTP protocol.

NetFtpLogin (5)
The remote host requests to log in
as an FTP user. The path param-
eter contains the username and
the password, separated by a colon
(“user:password”).

NetFtpGet (6)
The remote host requests to receive
this file from the Starling, using the
FTP protocol.

NetFtpPut (7)
The remote host requests to trans-
mit this file to the Starling, using
the FTP protocol.

NetFtpDel (8)
The remote host requests to delete
this file from the Starling server
(using the FTP protocol).

NetFtpMove (9)
The remote host requests to re-
name or move this file on the Star-
ling server (using the FTP proto-
col).

NetFtpCmd (10)
The remote host has sent a SITE
command. The path parameter con-
tains the text of the SITE command,
excluding the keyword SITE.

NetFtpList (11)
The remote host requests to list the
files in the specified directory.

NetFtpLogoutThis code is a notification that the
remote host has logged out of the
FTP server. The return code is ig-
nored —a logout cannot be can-
celed.

@receive — 51

socket The socket associated with the connec-
tion (HTTP and FTP servers only). The
socket can be used to monitor the con-
nection status. For an FTP server, the
socket represents the command channel.

Returns: The function should return true if it can fulfil the re-
quest and false on failure.

Notes: On a GET request, if the file cannot be found, the
TFTP, HTTP or FTP server in the Starling will always
return an appropriate error code. It is not necessary
to verify the presence of the files.

Any parameters on the URL, for a HTTP request, may
be used by the script to adjust settings. Web forms
often use parameters on the URL to pass data from
the client to the server.

If you do not implement this function, all TFTP, HTTP
and FTP server requests are denied. The FTP server
can only handle one user at a time. A login request
while there is already a connection open is denied.
Some modern FTP clients issue a second (or third. . .)
login for every file transfer; this option must be dis-
abled for the FTP server in the Starling.

This function is available on Starling models with an
Ethernet interface.

Example: See the code snippets on page 35 and page 36.

See also: netdownload, netupload

@receive Data from RS232 is received

Syntax: @receive(const data{}, length, port)

data The data received. The array may con-
tain one or more characters. A final zero-
byte is appended to the end.

length The number of bytes received. The zero-
byte appended to the data array is not
included in this count.

52 — @reset

port The number of the serial port on which
the data is received; 1 for the first port,
2 for the second port (if available). On
devices that that have a USB port, the
USB port identifies itself as port 0 (zero).

Returns: The return value of this function is currently ignored.

Notes: If you are expecting to receive only text, the length
parameter is the same as the string length of the data
parameter.

The Starling optionally suports software handshak-
ing (XON/XOFF) —see setserial. If software hand-
shaking is enabled, bytes with the values 17 (0x11,
Ctrl-Q) and 19 (0x13, Ctrl-S) and zero cannot be re-
ceived with this function. As an alternative, when
you need to transfer binary data in combination with
software handshaking, you can encode it using a pro-
tocol like UU-encode.

Example: See serial.p on page 9.

See also: setserial, transmit

@reset Script entry point

Syntax: @reset()

Returns: The return value of this function is currently ignored.

Notes: On power-up or on reset of the device, this is the
first function that is called. This function is there-
fore appropriate to initialize the settings needed for
the script and other call-back functions.

Function main is an alternative name for the same
function —you can use either @reset or main in a
script, but not both.

After starting a new script with exec, the new script
also starts with the @reset function.

See also: exec

@sample — 53

@sample A burst of samples arrived

Syntax: @sample(const Fixed:stamps[], numsamples)

stamps An array containing time-stamps in mil-
liseconds. The values are in fixed-point
format with three decimals (microsecond
resolution).

numsamples The number of time-stamps in parameter
stamps

Returns: The return value of this function is currently ignored.

Notes: After a pin has been set up for sampling (see sam-
plepin, the Starling starts sampling data as soon as
the state of that input pin changes, either from high
to low, or from low to high. What it passes to the
@sample() function are only the time-stamps of these
changes, not whether they go up or down. However,
you only need to know the direction of the first state
change; since each time-stamp signals a toggle of the
pin level, you can derive the pin level at any moment
in time from the initial state. For the Starling con-
troller, the initial state is defined as “high”, so the
first state change that is recorded is a transition from
high-level to low-level. This occurs at time-stamp
zero, because this change also starts the sampling
and all subsequent time-stamps are relative to the
start.

The zero time-stamp that starts the sampling is not
in the stamps array passed to the function. That is,
when the first element in the stamps array is 1.000,
the signal at the input pin is low between 0.000 ms
and 1.000 ms (relative to the start of the sampling);
at 1.000 ms, the signal toggled high.

If the pin is low-level at rest and the first change of
the pin is a transition to high level, the stamps array
contains a zero time-stamp as its first element —i.e.
stamps[0] is 0.000 in this case.

See also: samplepin

54 — @synch

@synch Synchronized lyrics/cue arrived
Syntax: @synch(const event[])

event The text of the synchronized event, as
read from the ID3 tag.

Returns: The return value of this function is currently ignored.
Notes: The buffer for storing synchronized events is shared

with the buffer for the script. When the script is
large, less memory is available for storing the events.
See the section “Reducingmemory requirements” on
page 38 for details.

Example: See sylt.p on page 8
See also: play

@timer A timer event occurred
Syntax: @timer()

Returns: The return value of this function is currently ignored.
Notes: This function executes after the configured delay or

interval expires. See settimer to set the delay or
interval. Depending on the timing precision of the
host, the call may occur later than the delay that was
set.
If the timer was set as a “single-shot”, it must be ex-
plicitly set again for a next execution for the @timer
function. If the timer is set to be repetitive, @timer
will continue to be called with the set interval until
it is disabled with another call to settimer.

See also: delay, settimer

audiostatus — 55

Native functions
amplifiergain Set the amplification level for speaker out
Syntax: amplifiergain(level)

level The level to set the amplifier gain to. This
must be a value between 1 (almost si-
lence) and 100 (full volume).

Returns: This function currently always returns zero.
Notes: The amplifier gain only affects the speak output vol-

ume. The output volume for headphone and line-
out must be changed with setvolume (but note that
setvolume changes the level of the speaker output as
well).
Using this fuction disables the default operation of
the “FUNC” and “AUX” buttons. That is, after setting
the amplifier gain with this function, the on-board
switches no longer adjust the gain.

See also: setvolume

audiostatus Get the current audio status
Syntax: AudioStat: audiostatus(decoder=1)

decoder The decoder for which the status infor-
mation is requested. For models with a
dual decoder, this parameter can be 1 or
2. This parameter is ignored on models
with a single decoder.

Returns: One of the following values:
Stopped (0)

The audio is stopped.
Paused (1)

The audio is paused and can be resumed.
Playing (2)

The audio is currently playing.
Notes: This function always returns the active status; it does

not rely on the presence of the event function @au-
diostatus.

See also: @audiostatus

56 — clearioqueue

clearioqueue Remove switch or input events from the queue

Syntax: clearioqueue()

Returns: This function always returns 0.

Notes: During lengthy processing (by the script), any I/O
events are queued. These events will then be han-
dled as soon as the lengthy processing terminates. If
this is undesired, the script may clear the I/O event
queue immediately after finishing the process. All
I/O events that have happened in the mean time will
then have been “forgotten”.

See also: @input

clamp Force a value inside a range

Syntax: clamp(value, min=cellmin, max=cellmax)

value The value to force in a range.

min The low bound of the range.

max The high bound of the range.

Returns: value if it is in the range min – max; min if value is
lower than min; and max if value is higher than max.

See also: max, min

configiopin Configure an I/O pin

Syntax: configiopin(pin, PinConfig: type,
bool: debounce=false)

pin The pin number, a value between 0 and
7 for models with 8 I/O pins, or between
0 and 15 for models with 16 I/O pins.

type The type, one of the following:
Output (0)

The pin is configured as output and
it can be set with setiopin.

cvttimestamp — 57

Input (1)
The pin is configured as input and
it can be read with getiopin; tog-
gling the pin also invokes function
@input.

debounce This parameter is only relevant when a
pin has been declared as “input”. When
debouncing for an input pin is true, a
change in status of the pin is reported
only after it has stabilized to a new level.
Glitches with a duration less then 20 ms
are ignored.

Returns: This function always returns 0.

Notes: After reset, all pins are configured as inputs (high-
impedance).

When configured as outputs, the pins can drive a LED
or an opto-coupler directly (no intermediate “driver”
IC is required). The voltage of the output pins can be
set with setvoltage.

For high-speed sampling of an input pin, see function
samplepin.

Example: See switches2.p on page 3

See also: @input, getiopin, samplepin setiopin, setvoltage

cvttimestamp Convert a time-stamp into a date and time

Syntax: cvttimestamp(seconds1970, &year=0, &month=0,
&day=0, &hour=0, &minute=0,
&second=0)

year This will hold the year upon return.

month This will hold the month (1–12) upon re-
turn.

day This will hold the day of (1–31) the month
upon return.

hour This will hold the hour (0–23) upon re-
turn.

58 — delay

minute This will hold the minute (0–59) upon re-
turn.

second This will hold the second (0–59) upon re-
turn.

Returns: This function always returns 0.
Notes: Some file and system functions return time-stamps

as the number of seconds since midnight, 1 January
1970, which is the start of the UNIX system epoch.
This function allows to convert these time stamps
into date and time fields.

See also: gettime, getdate, settimestamp

delay Halts execution a number of milliseconds
Syntax: delay(milliseconds)

milliseconds
The delay, in milliseconds.

Returns: This function currently always returns zero.
Notes: On some platforms, the sleep instruction also delays

for a given number of milliseconds. The difference
between the sleep instruction and the delay function
is that the delay function does not yield events and
the sleep instruction typically yields. When yielding
events is, any pending events are handled. As a re-
sult, the delay function waits without handling any
pending events and the sleep instruction waits and
deals with events.

See also: tickcount

deletecfg Deletes a key or a section from an INI file
Syntax: bool: deletecfg(const filename[]="",

const section[]="",
const key[]="")

filename The name and path of the INI file. If this
parameter is not set, the function uses
the default name “config.ini”.

exec — 59

section The section from which to delete the key.
If this parameter is not set, the function
stores the key/value pair outside any sec-
tion.

key The key to delete. If this parameter is not
set, the function deletes the entire sec-
tion.

Returns: true on success, false on failure.

Notes: If parameters section and key are both not set, the
function deletes all keys that are outside any sec-
tions.

See also: readcfg, writecfg

diskfree Returns the free disk space

Syntax: diskfree(const volume[]="")

volume The name of the volume on systems that
support multiple disks or multiple mem-
ory cards. On single-volume systems, it
is optional.

Returns: The amount of free space in KiB.

Notes: The maximum size that can be supported 2048 GiB
(2 terabyte).

exec Chain to another script

Syntax: bool: exec(const filename[])

filename The full name of the new script, including
the extension and path.

Returns: false if there was an error in loading of the script,
or if its validation failed. If the function succeeds, it
will not return, but instead start the new script.

See also: @reset

60 — fabs

fabs Return the absolute value of a fixed point number
Syntax: Fixed: fabs(Fixed: value)

value The value to return the absolute value of.
Returns: The absolute value of the parameter.

fattrib Set the file attributes
Syntax: bool: fattrib(const name[], timestamp=0,

attrib=0x0f)

name The name of the file.
timestamp Time of the last modification of the file.

When this parameter is set to zero, the
time stamp of the file is not changed.

attrib A bit mask with the new attributes of the
file. When set to 0x0f, the attributes of
the file are not changed.

Returns: true on success and false on failure.
Notes: The time is in number of seconds since midnight at

1 January 1970: the start of the UNIX system epoch.
The file attributes are a bit mask. The meaning of
each bit depends on the underlying file system (e.g.
FAT, NTFS, etx2 and others).

See also: fstat

fblockread Read an array from a file, without interpreting the
data
Syntax: fblockread(File: handle, buffer[],

size=sizeof buffer)

handle The handle to an open file.
buffer The buffer to read the data into.
size The number of cells to read from the file.

This value should not exceed the size of
the buffer parameter.

fclose — 61

Returns: The number of cells read from the file. This number
may be zero if the end of file has been reached.

Notes: This function reads an array from the file, without
encoding and ignoring line termination characters,
i.e. in binary format. The number of bytes to read
must be passed explicitly with the size parameter.

See also: fblockwrite, fopen, fread

fblockwrite Write an array to a file, without interpreting the
data

Syntax: fblockwrite(File: handle, const buffer[],
size=sizeof buffer)

handle The handle to an open file.

buffer The buffer that contains the data to write
to the file.

size The number of cells to write to the file.
This value should not exceed the size of
the buffer parameter.

Returns: The number of cells written to the file.

Notes: This function writes an array to the file, without en-
coding, i.e. in binary format. The buffer need not be
zero-terminated, and a zero cell does not indicate the
end of the buffer.

See also: fblockread, fopen, fwrite

fclose Close an open file

Syntax: bool: fclose(File: handle)

handle The handle to an open file.

Returns: true on success and false on failure.

See also: fopen

62 — fcopy

fcopy Copy a file

Syntax: bool: fcopy(const source[], const target[])

source The name of the (existing) file that must
be copied, optionally including a path.

target The name of the new file, optionally in-
cluding a full path.

Returns: true on success and false on failure.

Notes: If the target file already exists, it is overwritten.

See also: frename

fdiv Divide a fixed point number

Syntax: Fixed: fdiv(Fixed: oper1, Fixed: oper2)

oper1 The numerator of the quotient.

oper2 The denominator of the quotient.

Returns: The result: oper1/oper2.

Notes: The user-defined / operator forwards to this func-
tion.

See also: fmul

fexist Count matching files, check file existence

Syntax: fexist(const pattern[])

pattern The name of the file, optionally contain-
ing wild-card characters.

Returns: The number of files that match the pattern

filecrc — 63

Notes: In the pattern, the characters “?” and “*” are wild-
cards: “?” matches any character —but only exactly
one character, and “*” matches zero or more char-
acters. Only the final part of the path (the portion
behind the last slash or backslash) may contain wild-
cards.
If no wild-cards are present, the function returns 1
if the file exists and 0 if the file cannot be found. As
such, you can use the function to verify whether a
file exists.

See also: fmatch

ffract Return the fractional part of a number
Syntax: Fixed: ffract(Fixed: value)

value The number to extract the fractional part
of.

Returns: The fractional part of the parameter, in fixed point
format. For example, if the input value is “3.14”,
ffract returns “0.14”.

See also: fround

fgetchar Read a single character (byte)
Syntax: fgetchar(File: handle)

handle The handle to an open file.
Returns: The character that was read, or EOF on failure.
See also: fopen, fputchar

filecrc Return the 32-bit CRC value of a file
Syntax: filecrc(const name[])

name The name of the file.
Returns: The 32-bit CRC value of the file, or zero if the file

cannot be opened.

64 — fixed

Notes: The CRC value is a useful measure to check whether
the contents of a file has changed during transmis-
sion or whether it has been edited (provided that the
CRC value of the original file was saved). The CRC
value returned by this function is the same as the one
used in ZIP archives (PKZip, WinZip) and the “SFV”
utilities and file formats.

See also: fstat

fixed Convert integer to fixed point
Syntax: Fixed: fixed(value)

value the input value.
Returns: A fixed point number with the same (integral) value

as the parameter (provided that the integral value is
in range).

See also: fround, strfixed

flength Return the length of an open file
Syntax: flength(File: handle)

handle The handle to an open file.
Returns: The length of the file, in bytes.
See also: fopen, fstat

fmatch Find a filename matching a pattern
Syntax: bool: fmatch(name[], const pattern[], index=0,

maxlength=sizeof name)

name If the function is successful, this parame-
ter will hold a nth filename matching the
pattern. The name is always returned as
a packed string.

pattern The name of the file, optionally contain-
ing wild-card characters.

fmul — 65

index The number of the file in case there are
multiple files matching the pattern. Set-
ting this parameter to 0 returns the first
matching file, setting it to 1 returns the
second matching file, etc.

size The maximum size of parameter name in
cells.

Returns: true on success and false on failure.

Notes: In the pattern, the characters “?” and “*” are wild-
cards: “?” matches any character —but only exactly
one character, and “*” matches zero or more char-
acters. Only the final part of the path (the portion
behind the last slash or backslash) may contain wild-
cards.

The name that is returned in parameter name always
contains the full path to the file, starting from the
root.

See also: fexist

fmkdir Create a directory

Syntax: bool: fmkdir(const name[])

name The name of the directory to create, op-
tionally including a full path.

Returns: true on success and false on failure.

Notes: To delete the directory again, use fremove. The di-
rectory must be empty before it can be removed.

See also: fremove

fmul Multiply two fixed point numbers

Syntax: Fixed: fmul(Fixed: oper1, Fixed: oper2)

oper1
oper2 The two operands to multiply.

Returns: The result: oper1 × oper2.

66 — fmuldiv

Notes: The user-defined * operator forwards to this func-
tion.

See also: fdiv

fmuldiv Fixed point multiply followed by a divide
Syntax: Fixed: fmuldiv(Fixed: oper1, Fixed: oper2,

Fixed: divisor)

oper1
oper2 The two operands to multiply (before the

divide).
divisor The value to divide oper1 × oper2 by.

Returns: The result: oper1×oper2
divisor .

Notes: This function multiplies two fixed point numbers and
then divides it by a third number (“divisor”). Since
it avoids rounding the intermediate result (the mul-
tiplication), the result of fmuldiv(a, b, c) may have
higher precision than “(a * b) / c”.

See also: fdiv, fmul

fopen Open a file for reading or writing
Syntax: File: fopen(const name[],

filemode: mode=io readwrite)

name The name of the file, including the path.
mode The intended operations on the file. It

must be one of the following constants:
io read

opens an existing file for reading
only (the file must already exist)

io write
creates a new file (or truncates an
existing file) and opens it for writ-
ing only

io readwrite
opens a file for both reading and
writing; if the file does not exist, a
new file is created

fputchar — 67

io append
opens a file for writing only, where
all (new) information is appended
behind the existing contents of the
file; if the file does not exist, a new
file is created

Returns: A “handle” or “magic cookie” that refers to the file.
If the return value is zero, the function failed to open
the file.

Notes: The number of files that can be open at the same time
is limited. For the Starling series, four files can be
open at the same time.

See also: fclose

fpower Raise a fixed point number to a power
Syntax: Fixed: fpower(Fixed: value, exponent)

value The value to raise to a power; this is a
fixed point number.

exponent The exponent is a whole number (inte-
ger). The exponent may be zero or neg-
ative.

Returns: The result: valueexponent; this is a fixed point value.
Notes: For exponents higher than 2 and fractional values,

the fpower function may have higher precision than
repeated multiplication, because the function tries
to calculate with an extra digit. That is, the result
of fpower(3.142, 4) is probably more accurate than
3.142 * 3.142 * 3.142 * 3.142.

See also: fsqroot

fputchar Write a single character to the file
Syntax: bool: fputchar(File: handle, value)

handle The handle to an open file.
value The value to write (as a single character)

to the file.

68 — fread

Returns: true on success and false on failure.

Notes: The function writes a single byte to the file; values
above 255 are not supported.

See also: fgetchar, fopen

fread Reads a line from a text file

Syntax: fread(File: handle, string[],
size=sizeof string, bool: pack=false)

handle The handle to an open file.

string The array to store the data in; this is as-
sumed to be a text string.

size The (maximum) size of the array in cells.
For a packed string, one cell holds mul-
tiple characters.

pack If the pack parameter is false, the text is
stored as an unpacked string; otherwise
a packed string is returned.

Returns: The number of characters read. If the end of file is
reached, the return value is zero.

Notes: Reads a line of text, terminated by CR, LF or CR–LF
characters, from to the file. Any line termination
characters are stored in the string.

See also: fblockread, fopen, fwrite

fremove Delete a file or directory

Syntax: bool: fremove(const name[])

name The name of the file or the directory.

Returns: true on success and false on failure.

Notes: A directory can only be removed if it is empty.

See also: fmkdir, fexist, fopen

fround — 69

frename Rename a file

Syntax: bool: frename(const oldname[], const newname[])

oldname The current name of the file, optionally
including a full path.

newname The new name of the file, optionally in-
cluding a full path.

Returns: true on success and false on failure.

Notes: In addition to changing the name of the file, this func-
tion can also move the file to a different directory.

See also: fcopy, fremove

fround Round a fixed point number to an integer value

Syntax: fround(Fixed: value,
fround method: method=fround round)

value The value to round.

method The rounding method may be one of:
fround round

(default) round to the nearest inte-
ger, a fractional part of exactly 0.5
rounds upwards;

fround floor
round downwards;

fround ceil
round upwards;

fround tozero
round downwards for positive val-
ues and upwards for negative val-
ues (“truncate”);

fround unbiased
round to the nearest even integer
number when the fractional part is
exactly 0.5 (the values “1.5” and
“2.5” both round to “2”). It is also
known as “Banker’s rounding”.

Returns: The rounded value, as an integer (an untagged cell).

70 — fseek

Notes: When rounding negative values upwards or down-
wards, note that −2 is considered smaller than −1.

See also: ffract

fseek Set the current position in a file

Syntax: fseek(File: handle, position=0,
seek whence: whence=seek start)

handle The handle to an open file.

position The new position in the file, relative to
the parameter whence.

whence The starting position to which parameter
position relates. It must be one of the
following:
seek start

Set the file position relative to the
start of the file (the position pa-
rameter must be positive);

seek current
Set the file position relative to the
current file position: the position
parameter is added to the current
position;

seek end
Set the file position relative to the
end of the file (parameter position
must be zero or negative).

Returns: The new position, relative to the start of the file.

Notes: You can either seek forward or backward through the
file.

To get the current file position without changing it,
set the position parameter to zero and whence to
seek_current.

See also: fopen

fstat — 71

fsqroot Return the square root of a value

Syntax: Fixed: fsqroot(Fixed: value)

value The value to calculate the square root of.

Returns: The result: the square root of the input number.

Notes: This function raises a “domain” error is the input
value is negative.

See also: fpower

fstat Return the size and the time stamp of a file

Syntax: bool: fstat(const name[], &size=0,
×tamp=0, &attrib=0, &inode=0)

name The name of the file.

size If the function is successful, this param-
eter holds the size of the file on return.

timestamp If the function is successful, this parame-
ter holds the time of the last modification
of the file on return.

attrib If the function is successful, this param-
eter holds the file attributes.

inode If the function is successful, this param-
eter holds inode number of the file. An
inode number is a number that uniquely
identifies a file, and it usually indicates
the physical position of (the start of) the
file on the disk or memory card.

Returns: true on success and false on failure.

Notes: In contrast to the function flength, this function does
not need the file to be opened for querying its size.

The time is in number of seconds since midnight at
1 January 1970: the start of the UNIX system epoch.

The file attributes are a bit mask. The meaning of
each bit depends on the underlying file system (e.g.
FAT, NTFS, etx2 and others).

72 — funcidx

The inode number is useful for minimizing the gap
between tracks when playing audio tracks sequen-
tially. By storing the inode number and the file size
of the next track in a “resource id” (while the Star-
ling controller is still playing the current track), you
avoid the time needed to search through the direc-
tory system of the FAT file system. See function play
for details on resource ids.

See also: fattrib, flength

funcidx Return a public function index

Syntax: funcidx(const name[])

Returns: The index of the named public function. If no public
function with the given name exists, funcidx returns
−1.

Notes: A host application runs a public function from the
amx Exec: see the
“Implementer’s
Guide”

script by passing the function’s index to the abstract
machine (specifically function amx_Exec). With this
function, the script can query the index of a public
function, and thereby return the “next function to
call” to the application.

fwrite Write a string to a file

Syntax: fwrite(File: handle, const string[])

handle The handle to an open file.

string The string to write to the file.

Returns: The number of characters actually written; this may
be a different value from the string length in case of
a writing failure (“disk full”, or quota exceeded).

Notes: The function does not append line-ending characters
to the line of text written to the file (line ending char-
acters are CR, LF or CR–LF characters).

See also: fblockwrite, fopen, fread

getiopin — 73

getarg Get an argument
Syntax: getarg(arg, index=0)

arg The argument sequence number, use 0
for first argument.

index The index, in case arg refers to an array.
Returns: The value of the argument.
Notes: This function retrieves an argument from a variable

argument list. When the argument is an array, the
index parameter specifies the index into the array.
The return value is the retrieved argument.

See also: numargs, setarg

getdate Return the current (local) date
Syntax: getdate(&year=0, &month=0, &day=0)

year This will hold the year upon return.
month This will hold the month (1–12) upon re-

turn.
day This will hold the day of (1–31) the month

upon return.
Returns: The return value is the number of days since the start

of the year. January 1 is day 1 of the year.
See also: gettime, setdate

getiopin Read the indicated I/O pin
Syntax: getiopin(pin)

pin The pin number, or -1 to read the state of
all digital I/O pins as a bit mask.

Returns: If parameter pin is in the range 0. . .15, the return
value is the logical value of that specified I/O pin: 0
or 1. If parameter pin is -1, the return value is a value
where the bits represent the state of the respective
I/O pins.

74 — gettime

Notes: On models with 8 I/O pins, the pin parameter must
be in the range 0. . .7, or -1 to read all 8 pins as a bit
mask. Onmodels with 16 I/O pins, the pin parameter
must be in the range 0. . .15, or -1 to read all 16 pins
as a bit mask.

When a pin is defined as output, it reads back as
zero. See function configiopin for configuring pins.
After reset, all pins are configured as inputs (high-
impedance).

This function always returns the current logical level
of the pin, regardless of whether the public function
@input is defined.

See also: @input, configiopin, setiopin

gettime Return the current (local) time

Syntax: gettime(&hour=0, &minute=0, &second=0)

hour This will hold the hour (0–23) upon re-
turn.

minute This will hold the minute (0–59) upon re-
turn.

second This will hold the second (0–59) upon re-
turn.

Returns: The return value is the number of seconds since mid-
night, 1 January 1970: the start of the UNIX system
epoch.

See also: getdate, settime

getvolume Read the current volume and balance settings

Syntax: bool: getvolume(&volume=0, &balance=0,
decoder=1)

volume This (optional) parameter will hold the
volume setting upon return (a value in
the range 0. . .100).

ispacked — 75

balance This (optional) parameter will hold the
balance setting upon return (a value in
the range −100. . .+100).

decoder For models with a dual decoder, this pa-
rameter can be 1 or 2. This parameter is
ignored on models with a single decoder.

Returns: This function returns true if a volume fade is cur-
rently in progress, and false if no fade was started
or the fade has finished.

Notes: If the output channels are muted, the original volume
settings will still be returned.

See also: bass, mute, setvolume, treble

heapspace Return free heap space

Syntax: heapspace()

Returns: The free space on the heap. The stack and the heap
occupy a shared memory area, so this value indicates
the number of bytes that is left for either the stack
or the heap.

Notes: In absence of recursion, the PAWN parser can also
give an estimate of the required stack/heap space.

ispacked Determine whether a string is packed or unpacked

Syntax: bool: ispacked(const string[])

string The string to verify the packed/unpacked
status for.

Returns: true if the parameter refers to a packed string, and
false otherwise.

76 — max

max Return the highest of two numbers

Syntax: max(value1, value2)

value1
value2 The two values for which to find the high-

est number.

Returns: The higher value of value1 and value2.

See also: clamp, min

memcpy Copy bytes from one location to another

Syntax: memcpy(dest[], const source[], index=0,
numbytes, maxlength=sizeof dest)

dest An array where the bytes from source
are copied in.

source The source array.

index The index, in bytes in the source array
starting from which the data should be
copied.

numbytes The number of bytes (not cells) to copy.

maxlength The maximum number of cells that fit in
the destination buffer.

Returns: true on success, false on failure.

Notes: This function can align byte strings in cell arrays, or
concatenate two byte strings in two arrays. The pa-
rameter index is a byte offset and numbytes is the
number of bytes to copy.

This function allows copying in-place, for aligning a
byte region inside a cell array.

See also: strcopy, strpack, strunpack, uudecode, uuencode

netarp — 77

min Return the lowest of two numbers

Syntax: min(value1, value2)

value1
value2 The two values for which to find the low-

est number.

Returns: The lower value of value1 and value2.

See also: clamp, max

mute Mute or unmute the audio

Syntax: mute(bool: on, decoder=1)

on Set to true to silence the audio, or false
to return to the previously set volume.

decoder The decoder that must be muted or un-
muted. For models with a dual decoder,
this parameter can be 1 or 2. This pa-
rameter is ignored on models with a sin-
gle decoder.

Returns: This function always returns 0.

Notes: This function does not change the volume and bal-
ance setting. When “unmuting”, the device returns
to the previously set volume.

See also: setvolume

netarp Refresh the ARP cache

Syntax: bool: netarp(const remote addr[])

remote addr
The domain name or the IP address of
the host whose hardware address (MAC
address) should be refreshed in the ARP
cache.

Returns: true if the remote MAC address is in the ARP cache,
and false otherwise.

78 — netclose

Notes: The ARP cache holds the hardware (MAC) address
of the first hop to send a network packet to, in order
to get the packet to the destination. This may either
be the MAC address of the other host, or the MAC
address of the relevant gateway.

When making a connection, or sending a packet to
another host, if the MAC address is not already in
the ARP cache, the network interface first needs to
obtain the MAC address. It does this via a proto-
col named “ARP”. Waiting for the ARP response may
take several seconds, especially if the remote host is
unresponsive (e.g. it is “down”). In situations where
no delay in setting up a connection may be allowed,
one option is to regularly refresh the MAC address in
the ARP cache, and to communicate with the remote
host only if the MAC address is indeed cached (and
therefore the remote host is “up”).

This function sends an ARP request, but returns im-
mediately —before the response arrives. The first
time that this function is called for a new host, it may
therefore return false, even if the host is up. When
netarp is called again, after a suitable delay, the ARP
cache will have been updated.

This function is available on Starling models with an
Ethernet interface.

See also: netlookup

netclose Close a socket

Syntax: bool: netclose(socket)

socket The socket number to close. This value
must have been returned by an earlier
call to a function that opens a socket (see
netconnect and netlisten).

Returns: true on success and false on failure.

netctrl — 79

Notes: When closing a “listening” connection, the ability for
remote hosts to connect is disabled. To close the ac-
tive connection with a remote host, but remain avail-
able to new connections, call netlisten after the call
to netclose.

This function is available on Starling models with an
Ethernet interface.

See also: netconnect, netlisten

netconnect Open a connection / socket

Syntax: netconnect(const remote addr[])

remote addr
The IP address and (optionally) the port
number to connect to. An example of a
full address is “193.54.69.12:23”, where
the host has IP address 193.54.69.12 and
the service is at port number 23. If the
port number is absent, the function con-
nects to the default port 9930. Instead
of an IP address, you may also give a do-
main name, as in “my.domain.com:2”.

Returns: The function returns a socket number of the open is
successful, or zero on failure.

Notes: This function opens a socket and sets up a transfer to
a remote host. That is, it sets up an outgoing connec-
tion. See netlisten to handle incoming connections.

This function is available on Starling models with an
Ethernet interface.

See also: netclose, netsend

netctrl Set connection options

Syntax: netctrl(NetCtrl: option, value)

option The connection option to set, it must be
one of the following:

80 — netctrl

MSS512 (1)
A value of 1 forces the TCP MSS to
be 512 bytes and the TCP reception
window to be twice the MSS (i/e/
1024 bytes). A value of 0 sets the
default value of the MTU minus 40
bytes, and a dynamic window size.

FullDuplex (2)
On the Starling, the bitrate and the
full/half duplex settings are deter-
mined through auto-negotiation
with the switch. The value param-
eter is ignored. The return value is
the active setting: 0 for half-duplex,
1 for full-duplex.

UseChecksum (3)
A value of 1 activates checksum
verification on all received packets.
Packets with an incorrect checksum
are rejected. A value of 0 deacti-
vates checksum verification. This
option does not have any effect on
transmitted packets: packets sent
out always have a checksum set.

EthBitRate (7)
On the Starling, the bitrate and the
full/half duplex settings are deter-
mined through auto-negotiation
with the switch. The value param-
eter is ignored. The return value is
the active setting: 0 for 10 Mb/s, 1
for 100 Mb/s.

value The value to set the option to. See pa-
rameter option for details.

Notes: This function is available on Starling models with an
Ethernet interface.

Returns: The function returns the previous value of the setting
(which is the active value for read-only settings).

See also: netsetup

netdownload — 81

netdownload Download a file

Syntax: netdownload(const url[], const filename[]="",
File: handle=File:0)

url The full network path of the file to down-
load, preferably including the protocol.
For example, to download “loops.mp3”
from www.soundclips.com using HTTP,
the URL would be:
“http://www.soundclips.com/loops.mp3”

filename The local filename to downloaded the file
to. This name may optionally include a
directory.

handle An optional handle to a file that was has
been explicitly opened by the script.

Returns: The function returns 0 on error (unable to connect to
the host, or file not found) and a socket number on
success.

Notes: To download from a HTTP server, use the protocol
designator “http://”; to download from an FTP server,
the protocol designator is “ftp://”. To download a
file from a TFTP server, the protocol designator is
“tftp://”.

The function returns before the download is com-
plete. When the download completes, you will re-
ceive the event @netstatus with code NetHttpDone,
NetFtpDone or NetTftpDone. You can abort a transfer
by calling netclose on the returned socket number.

The FTP protocol uses two sockets for a file transfer:
a command socket and a data socket. This function
returns the command socket. When the data transfer
is set up, the native function @netstatus is invoked
with the event code NetFtpStart together with the
socket number for the data channel.

To test the progress of a file download, call netsock-
stat on the socket to check how many bytes are be-
ing transferred. For an FTP transfer, check on the
data socket (not the command socket that this func-
tion returns).

82 — netinfo

When passing in a file handle instead of a filename,
the handle must be opened by the script before call-
ing this function, but it is closed at the end of the
download. Using a file handle allows you to explic-
itly reserve the file space on the memory card.
This function is available on Starling models with an
Ethernet interface.

See also: @netstatus, netclose, netsockstat, netupload

netinfo Get network status information
Syntax: netinfo(NetInfo: code,

string[]="", size=sizeof string)

code The kind of data to return, it must be one
of the following:
LinkStatus (0)

The status of the physical link: 0 if
the device has no good (physical)
connection to a network (LAN or
WAN), and 1 if the physical link is
present. A bad physical link usually
indicates that the device is discon-
nected or that the cable is defec-
tive.

IPaddress (1)
The IP address of this host.

SubnetMask (2)
The subnet mask for the LAN.

GatewayIP (3)
The address of the gateway.

DNS IP (4)
The address of the primary domain
name server.

MACaddr (5)
The hardware (MAC) address; this
information is only returned as a
string.

HostName (6)
The name of the Starling device as
known on the network; this item is
only returned as a string.

netinfo — 83

StreamQueue (7)
The level to which the stream
queue is filled, in the context of
progressive HTTP streaming. This
value is in kilobytes, so when the
return value is 98, there is 98 KiB
of audio data in the queue, at the
time of the call.

PacketLoss (8)
The number of RTP packets lost
since the last request; in the con-
text of RTP streaming. This “lost
packets” count is reset to zero after
this call.

LeaseTime (9)
The time left until the lease expires
(in seconds).

NetErrors (10)
The number of transmission errors
that are detected by the Ethernet
hardware.

NetRedirect (11)
The URL that the resource moved
to, according to the server. On re-
ceiving a NetRscMoved status event
in a call to netstream you can query
the URL to redirect to with this
code. See function @netstatus for
the NetRscMoved event.

string If provided (and of suitable length), the
item is stored in a formatted way as a
packed string in this parameter.

size The size of the string parameter, in cells.
Since the function stores the data in pa-
rameter string as a packed string, four
characters fit into a single cell.

Returns: The requested value, or zero on error.

Notes: The function returns the data as a number (except
for the codes MACaddr and HostName). If a string of
suitable length is provided, the function also stores
the value as a formatted number. IP addresses are

84 — netlisten

stored in the string parameter as dotted numbers
(for example: “192.168.1.16”).
This function is available on Starling models with an
Ethernet interface.

See also: @netstatus, netsetup, netsockstat, netstream

netlisten Open a “listening” connection
Syntax: netlisten(port=9930,

NetProtocol: protocol=UDP)

port The number of the port to listen to. The
default port is 9930.

protocol Must be either TCP or UDP.
Returns: The socket number, or zero on error.
Notes: A “listening connection” is needed to accept incom-

ing connections. For outgoing connections, see net-
connect. Both incoming and outgoing connections
need function @netreceive to handle received data.
When a remote host connects to a listening socket,
this is also called a “passive connect”.
By default, a listening connection is already set up on
the UDP port 9930. In order to listen to a different
port, or to listen on a TCP connection, you need to
call netlisten explicitly.
The function returns a socket number for the “lis-
tener”. To stop listening on the port, close this socket
with netclose. After closing a listening socket, an
external host can no longer connect to the MP3 con-
troller (and send it data). In order to close a con-
nection and return to a listening state, first call net-
close and then call netlisten again to set up a new
listener.
You can only listen to one TCP socket and/or oneUDP
socket at a time. A UDP socket may receive incoming
packets from multiple hosts (and reply to multiple
hosts); a TCP socket is a point-to-point connection to
a single host.
This function is available on Starling models with an
Ethernet interface.

netping — 85

Example: See the Telnet server (skeleton) on page 23.
See also: @netreceive, netclose, netconnect

netlookup Look up a domain name
Syntax: bool: netlookup(const domainname[], ipad-

dress[], size=sizeof ipad-
dress)

domainname The domain name of the host to get the
IP address for.

ipaddress The IP address will be stored in this pa-
rameter, as a packed string. For the max-
imum address length, the string should
be able to contain at least 16 characters.

size The size (in cells) of ipaddress. If this
value is less than four, the returned IP
address may be truncated.

Returns: true on success, false on failure.
Notes: The purpose of this function is to convert a domain

name to a dotted IP address. This allows a script
to use the IP address to communicate with the re-
mote host, and “forget” the domain name. There are
two advantages in using IP addresses instead of do-
main names: IP addresses are usually shorter (and
require less memory) and connecting to an IP ad-
dress is quicker than to a domain name.
This function is available on Starling models with an
Ethernet interface.

See also: netconnect

netping “Ping” remote host
Syntax: bool: netping(const remote addr[], sequence=0)

remote addr
The IP address or the domain name of
the remote host to send a ping request
to. No port number may be attached to
the IP address or domain name.

86 — netping

sequence An arbitrary number that allows you to
match the ping response to a request, in
case you send multiple “pings”.

Returns: true if the “ping” message could be sent, false if
sending the message failed.

Notes: The first step in diagnosing a network problem often
is to send a “ping” message. If the message can be
sent and a reply is received within (at most) a few
seconds, the core protocols of the TCP/IP protocol
suite are working and the remote host is up.

If a call to netping fails, this indicates one of the fol-
lowing:
⋄ Physical connection down: no cable is attached
to the device, the cable is damaged, the network
switch or hub is down, . . .

⋄ No gateway: the IP address in remote_addr lies in
a different network than this host and the gateway
is misconfigured or non-responding. This situation
may also occur when this host has obtained a link-
local address and it is trying to reach computers
outside the link-local address range.

⋄ ARP failure: the IP address in remote_addr is in
the same network as this host, but the remote host
does not respond to address look-up queries (ARP).
This usually means that the remote host is down.

⋄ DNS/NetBIOS failure: if you passed in a domain
name in parameter remote_addr (instead of an IP
address), this name could not be resolved to an IP
address using DNS and/or NetBIOS queries.

Function netping returns immediately after sending
the ping request; it does not wait for a reply. If the re-
mote host responds to the ping request, the returned
answer will fire the event @netstatus with code Net-
Ping and the status parameter set to the sequence
number of the corresponding call to netping.

This function is available on Starling models with an
Ethernet interface.

See also: @netstatus, netinfo

netsend — 87

netsend Send a packet
Syntax: bool: netsend(const buffer[], size=-1, const

remote addr[])

buffer The data to send to a remote host; this
can be either packed or unpacked.

size The size of the buffer in bytes. When set
to -1 (or not passed in), the buffer pa-
rameter is assumed to be a string, and
the function sends up to (but not includ-
ing) the zero-terminator of the string. To
send an unpacked array, multiply the ar-
ray length by 4 (the size of a cell).

remote addr
Either an IP address and a port, for send-
ing an UDP datagram, or a socket num-
ber for sending a TCP message —see the
notes for details.

Returns: true on success and false on failure.
Notes: When sending an UDP message, the remote address

should have the form like “193.54.119.12:23”, where
the host is at IP address “193.54.119.12” and the ser-
vice is at port number 23. You may give a domain
name, like “server.mydomain.com:23”, instead of an
IP address. If the port number is absent, the function
connects to the default port 9930.
For sending a TCP message, the remote_addr param-
eter must contain only a socket number, optionally
prefixed with a “#”. For example, when sending on
socket 3, remote_addr could have the value “#3”. See
netsocket to convert socket numbers to a string with
a “#” prefix.
TCP connections must be set up before any data can
be sent, see function netconnect.
The netsend function sends numeric data in param-
eter buffer as 32-bit values in “network byte order”
(Big Endian).
This function is available on Starling models with an
Ethernet interface.

88 — netsetup

Example: See the Telnet server (skeleton) on page 23.

See also: @netreceive, netconnect, netsocket

netsetup Initialize the network

Syntax: bool: netsetup(const ip address[]="",
const gateway address[]="",
const dns address[]="",
const subnet mask[]="",
const hostname[]="")

ip address The IP address of this host (the MP3 con-
troller), or empty to have it looked up
from a DHCP server.

gateway address
The IP address of the gateway, or empty
to have it looked up from a DHCP server.

dns address
The IP address of the DNS server, or
empty to have it looked up from a DHCP
server.

subnet mask
The network mask in “dotted format”, or
empty to have it looked up from a DHCP
server.

hostname The name of this host. This name is used
for the DHCP request and for the DNS
and NetBIOS look-ups. If left empty, the
standard name is “Starling”.

Returns: true on success and false on failure.

Notes: All IP addresses should be in “dotted format”, mean-
ing four decimal numbers in the range of 0 to 255
separated by periods. An example is 192.168.10.29.

You should avoid doing partial DHCP look-up; either
leave the first three parameters of netsetup empty
(in order to have them provided by a DHCP server),

netshutdown — 89

or specify all three: the host IP address, the gate-
way address and the DNS server address. For com-
mon networks, the function can establish the net-
work mask automatically, but if known, it is best to
specify it as well.

If no IP addresses are given, and DHCP fails too, the
Starling assigns a “link-local” address to itself. Link-
local addresses are only valid inside a LAN (the link-
local address range is non-routable). The Starling
will not have access to the Internet when it has a
link-local address. The link-local address scheme is
also known as “AutoIP” and “APIPA”.

The network interface starts up in half-duplex with
an MTU of 1454 bytes (a safe value for based on
Ethernet 2 frames tunneled over PPoE), and with an
adaptive reception window. These options can be
changed with netctrl.

This function is available on Starling models with an
Ethernet interface.

Example: See the code snippets on page 22 and page 28.

See also: netctrl, netshutdown

netshutdown Close the network interface

Syntax: netshutdown()

Returns: This function currently always returns 0.

Notes: This function closes down the network support and
frees all resources.

This function is available on Starling models with an
Ethernet interface.

See also: netsetup

90 — netsnmpcfg

netsnmpcfg Set the communities (passwords) for SNMP

Syntax: netsnmpcfg(const readonly community[],
const readwrite community[])

readonly community
The password that allows reading device
values, but not modifying them. The de-
fault string for this community is “pub-
lic”.

readwrite community
The password that allows modifying de-
vice values. The default string for this
community is “private”.

Returns: This function currently always returns 0.

Notes: See the section on SNMP on page 31 for more infor-
mation on SNMP authentication and access rules.

This function is available on Starling models with an
Ethernet interface.

See also: @netsnmp, netsnmptrap

netsnmptrap Send an SNMP trap

Syntax: bool: netsnmptrap(const remote addr[], trap,
item=0, const value[]="")

remote addr
The IP address or the domain name of the
host to send the trap to.

trap The code for the trap. Predefined (stan-
dardized) trap numbers are:
ColdStart (0)

Device power-up.
WarmStart (1)

Device reset.
LinkDown (2)

Network link is down.
LinkUp (3)

Network link is up.

netsocket — 91

AuthenticationFailed (4)
Authentication failed.

EGPNeighborLoss (5)
Neighbour in the Exterior Gateway
Protocol was lost.

See the SNMP standard for details on the
standard traps.

Instead of a predefined trap number, you
can also send a device-specific trap (this
is called an “enterprise-specific” trap in
the SNMP documentation.

item Parameter to which the trap relates (see
the MIB file).

value New value of the item parameter, which
caused the trap.

Returns: true on success, false on failure (trap could not be
sent).

Notes: The MIB file must define “enterprise-specific” traps
with trap numbers 6 and higher. The SNMP imple-
mentation of the Starling reserves traps 0 through 5
for the standard traps (see parameter trap).

This function is available on Starling models with an
Ethernet interface.

See also: @netsnmp, netsyslog

netsocket Make a socket string from a socket number

Syntax: netsocket(value)

value The socket number.

Returns: A string containing the character “#” followed by the
text representation of the parameter value. For ex-
ample, if parameter value is 5, this function returns
the string "#5".

This function is available on Starling models with an
Ethernet interface.

See also: netsend

92 — netsockstat

netsockstat Return type and throughput of a socket

Syntax: bool: netsockstat(socket, &protocol=0, &sent=0,
&received=0)

socket The socket number.

protocol On return, this value will be 1 for ICMP, 6
for TCP or 17 for UDP, depending on the
protocol of the socket.

sent On return, this value will be set to the
current value of the TCP sequence num-
ber for the transmitted data.

received On return, this value will be set to the
current value of the TCP sequence num-
ber for the received data.

Returns: true on success, false on failure (invalid socket)

Notes: In the TCP/IP protocols, the sequence numbers rep-
resent the number of bytes being transmitted and re-
ceived, including all bytes transmitted for data syn-
chronization and acknowledgements. The sequence
numbers do, however, not start at zero (due to proto-
col reasons). To get the true number of received and
transmitted bytes, query the sequence numbers im-
mediately after opening a connection, and subtract
these “start values” from the sequence numbers ob-
tained in subsequent calls to netsockstat.

This function is available on Starling models with an
Ethernet interface.

See also: @netstatus, netinfo

netstream Start buffering an audio stream

Syntax: netstream(const url[], buffermark=128,
bool: autoplay=true)

netstream — 93

url The full network path of the file to down-
load, preferably including the protocol.
The protocol prefix is “icy://” for Shout-
cast and Icecast servers that are on the
default port 8000. If the server uses port
80 instead, you may use the protocol pre-
fix “http://”, or add a port number ex-
plicitly.

buffermark The fill level of the stream queue before
starting playing the stream, in kilobytes.
The minimum is 8 for HTTP streaming,
and 2 for RTP streaming; the maximum
value is 256. See page 26 for details on
the stream queue.

autoplay If true, the stream starts to play (out-
put audio) as soon as the level in param-
eter buffermark is reached. When set
to false, the public function @netstatus
is still called with code NetStreamQueue,
but no audio is output.

Returns: The socket number opened for the stream, or 0 on
failure.

Notes: Many Shoutcast and Icecast servers publish only an
URL to a playlist, which then in turn contains the
URL to the audio stream. This function needs the
latter: the URL to the audio stream. If you wish to
use the playlist approach, your script can download
it via netdownload and then parse through it with the
file functions (the playlist is a standard text file).
When the stream queue reaches the indicated level,
event function @netstatus receives NetStreamQueue.
By default, the stream also starts playing automati-
cally (possibly interrupting a track that may be play-
ing at the time). However, if parameter autoplay is
set to false, the script must explicitly call function
play with parameter "stream:" to start playing the
stream.
To close a stream, call netstreamwith the url param-
eter set to an empty string.
For RTP streaming, the buffer size is directly related
to the latency. For example, at 128 kbps, each second

94 — netsynctime

of audio takes 16 kilobytes. Setting the buffermark
parameter to 16 means a latency of 1 second, in this
example.

This function is available on Starling models with an
Ethernet interface.

Example: See the code snippet on page 28.

See also: @netstatus, play

netsynctime Request network time synchronization

Syntax: bool: netsynctime(const remote addr[])

remote addr
The IP address or the domain name of
the remote host to send the network time
request to. No port number may be at-
tached to the IP address or domain name.

Returns: true if the request for the network time could be
sent, false if sending the request failed.

Notes: The function returns immediately after sending the
request; it does not wait for a reply. If the remote
host responds to the network time request, the re-
turned answer will fire the event @netstatus with
code NetTimeSync. The internal clock of theMP3 con-
troller will also be set to the time that the remote host
returns.

This function uses the protocol SNTP to synchronize
the clock. This protocol returns the time in UTC (the
current name for “Greenwich Mean Time”). To ob-
tain the accurate local time, you need to intercept
the NetTimeSync event (function @netstatus) and add
the time zone offset to the time. With this procedure,
you can also adjust for daylight saving time.

This function is available on Starling models with an
Ethernet interface.

See also: @netstatus

netsyslog — 95

netsyslog Send a system log message

Syntax: bool: netsyslog(const remote addr[],
const message[], severity=5)

remote addr
The IP address or the domain name of
the remote host to send the log message
to. A port number may optionally be at-
tached to the IP address or domain name
(using a colon to separate the IP address
from the port number).

message Themessage to send to the syslog server.

severity By convention, a value between 0 and 7,
with the following meanings:
0 = emergency (system is unusable)
1 = alert (immediate action required)
2 = critical
3 = error
4 =warning
5 = notice (normal, but significant condi-

tion)
6 = informational
7 = debug

Returns: true on success, false if sending the message failed.

Notes: Syslog is an industry standard protocol used for cap-
turing log information for devices on a network, usu-
ally via UDP Port 514. Syslog support is included in
UNIX and Linux based systems, but is not included in
Microsoft Windows and MacOS. However, there are
third-party applications available to add this capabil-
ity to your system.

The function uses “local0” as the facility code in the
Syslog message.

This function is available on Starling models with an
Ethernet interface.

See also: netsnmptrap

96 — netupload

netupload Download a file

Syntax: netupload(const url[], const filename[]="")

url The full URL to upload the file to, prefer-
ably including the protocol prefix. To up-
load a file with the name “loops.mp3” to
the server at address 195.200.2.66, and
using TFTP, the URL would be:
“tftp://195.200.2.66/loops.mp3”.

filename The full path and filename of the local
file.

Returns: The function returns 0 on error (unable to connect to
the host, or file not found) and a socket number on
success.

Notes: In the current version of the firmware, only FTP and
TFTP are available as protocols for uploading data to
an external server. To upload to an FTP server, use
the protocol designator “ftp://”; for a TFTP server,
the protocol designator is “tftp://”.

The function returns before the upload is complete.
When the upload completes, event function @netsta-
tus receives code NetHttpDone, NetFtpDone or Net-
TftpDone. You can abort a transfer by calling net-
close on the returned socket number.

This function is available on Starling models with an
Ethernet interface.

See also: @netstatus, netclose, netdownload

numargs Return the number of arguments

Syntax: numargs()

Returns: The number of arguments passed to a function; nu-
margs is useful inside functions with a variable argu-
ment list.

See also: getarg, setarg

play — 97

pause Pauses playback
Syntax: bool: pause(decoder=1)

decoder The decoder that must be paused. For
models with a dual decoder, this param-
eter can be 1 or 2. This parameter is ig-
nored on models with a single decoder.

Returns: true on success, false on failure (no audio is cur-
rently playing).

See also: play, resume, stop

play Start playing an audio file
Syntax: bool: play(const filename[], repeats=0,

bool: paused=false, decoder=1)

filename The full filename and path of the file, or
a resource id for the file. See the notes
for the format of a resource id.
The filename may also be an URL to a
track on a HTTP server or an URL to a
streaming server.

repeats The count that the audio segment should
be repeated. When set to zero (which
is the default value), the audio file plays
only once. When set to cellmax, the au-
dio file is repeated indefinitely until it is
explicitly stopped or until another file is
scheduled to play.

paused When set to true, the track is prepared
for playback in the specified decoder, but
the decoder is put in “paused” mode. To
play the track, you must call resume.

decoder The decoder to play the track on. For
models with a dual decoder, this param-
eter can be 1 or 2. This parameter is ig-
nored on models with a single decoder.

Returns: true on success, false on failure (file not found or
invalid format).

98 — random

Notes: Instead of a path and filename of an audio track, you
can also pass in a “resource id” of the track. The
resource id is an array with three values:
⋄ Array index 0 (the first cell of the array) must have
the value 1.

⋄ Array index 1 must have the “inode” number of the
file, see fstat.

⋄ Array index 2 must have the size of the file in bytes
(also obtained with fstat).

The purpose of resource id’s is that looking up a track
in the directory structure may be a time-consuming
operation if you have many audio tracks on the card.
With fstat, the script can prepare the parameters of
the next track to play and store it in a resource id
—all while the device is playing another track. When
that track ends, the script plays the resource id. The
prepared track plays immediately, because no time
is needed to look up its location. Thus, playing a re-
source id allows you to minimize the gap between
tracks.

Function play may also be used to start playing a
network stream. However, the function netstream
offers more control for streaming audio.

Example: See serial.p on page 9.

See also: fstat, netstream, resume, stop

random Return a pseudo-random number

Syntax: random(max)

max The limit for the random number.

Returns: A pseudo-random number in the range 0. . .max-1.

Notes: The random-number generator is based on a cryp-
tographic function and it is considered to produce
good quality pseudo-random numbers. The genera-
tor chooses its own seed at each power-up.

readcfgvalue — 99

readcfg Reads a text field from an INI file
Syntax: readcfg(const filename[]="",

const section[]="", const key[],
value[], size=sizeof value,
const defvalue[]="", bool: pack=true)

filename The name and path of the INI file. If this
parameter is not set, the function uses
the default name “config.ini”.

section The section to look for the key. If this
parameter is not set, the function reads
the key outside any section.

key The key whose value must be looked up.
value The buffer into which to store the value.

If the key is not present in the appropri-
ate section of the INI file, the contents
of parameter defvalue is copied into this
buffer.

size The (maximum) size of the value array in
cells. For a packed string, one cell holds
multiple characters.

defvalue The string to copy into parameter value
in case that the function cannot read the
field from the INI file.

pack If the pack parameter is false, the text is
stored as an unpacked string; otherwise
a packed string is returned.

Returns: The number of characters stored in parameter value.
See also: readcfgvalue, writecfg

readcfgvalue Reads a numeric field from an INI file
Syntax: readcfgvalue(const filename[]="",

const section[]="", const key[],
defvalue=0)

filename The name and path of the INI file. If this
parameter is not set, the function uses
the default name “config.ini”.

100 — readconfig

section The section to look for the key. If this
parameter is not set, the function reads
the key outside any section.

key The key whose value must be looked up.

defvalue The value to return in case that the func-
tion cannot read the field from the INI
file.

Returns: The numeric value if the field, or the value of def-
value if the field was not found in the section and/or
at the key.

See also: readcfg, writecfgvalue

readconfig Read device configuration

Syntax: readconfig(data[], size=sizeof data, area=0)

data An array that will contain the data read
from the configuration area upon return
of this function.

size The number of cells to read in the array.
The maximum size if 64 cells.

area The area to store the data;
0 = Flash ROM, 1 = battery backed RAM.

Returns: This function currently always returns 0.

Notes: The Starling controller provides two areas of auxil-
iary non-volatile memory into which the script can
store data. These are suitable for settings that must
be retained even after a memory card is exchanged.

See function storeconfig for the difference between
the two configuration memory areas.

See also: storeconfig

receive — 101

receive Receive data over the serial line

Syntax: receive(data, size, port=1, index=-1)

data An array that will hold any received data,
as a packed array, upon return.

size The maximum size in bytes to receive.

port On devices with two or more serial ports,
this parameter specifies which port to re-
ceive from. This must be 1 for the first
port, 2 for the second port and 0 (zero)
to receive from a USB port.

index The position in the queue from which to
start reading the data. If not specified
(or set to -1), the data is read from the
start of the queue and removed from the
start of the queue; if set to zero or a pos-
itive value, the data is not removed from
the queue.

Returns: The number of bytes read on success, or zero if no
bytes are waiting.

Notes: The serial port must have been set up (“opened”) be-
fore using this function.

If software handshaking is enabled (see setserial),
bytes with the values 17 (0x11, Ctrl-Q), 19 (0x13, Ctrl-
S) will be handled internally, and these bytes are
then not received. These values denote the XON and
XOFF signals.

Each serial port has a 128-byte queue. When this
queue overflows, the oldest data is overwritten with
newly received data.

See also: setserial, transmit

102 — reset

reset Causes a full reset

Syntax: reset()

Returns: This function does not return.

Notes: When this function is called, the Starling goes into a
reset. This also causes function @reset (in the script)
to be invoked again.

The Starling will poll for a debugger on the RS232 or
USB ports after a programmed reset, regardless of
whether the script on thememory card was built with
debug information. If no debugger is present, the
polling may cause a start-up delay of approximately
one second.

Example: See the debugger support function on page 41.

See also: @reset, watchdog

resume Resumes playback that was paused earlier

Syntax: bool: resume(decoder=1)

decoder The decoder that must be resumed. For
models with a dual decoder, this param-
eter can be 1 or 2. This parameter is ig-
nored on models with a single decoder.

Returns: true on success, false on failure (i.e. no audio is cur-
rently paused).

Notes: The difference between resume and play is that re-
sume will resume playback from the position where
the audio was paused earlier; play will always start
playing from the beginning of the track.

See also: pause, play

seekto — 103

samplepin Configure a pin for input sampling

Syntax: samplepin(pin, timeout)

pin The pin number, between 0 and 7.

timeout The duration of the sampling period, in
milliseconds, starting from the first de-
tected change in the level of the pin (low
to high, or high to low).

Returns: This function always returns 0.

Notes: The pin is configured as input (no debounce) and for
collecting time-stamped data. When a change of the
value of the pin is detected, all subsequent changes
of the pin within the configured time-out are passed
to the public function @sample, with precision time-
stamps.

Only a single pin may be configured for sampling. On
Starling models that support more than 8 I/O pins,
only the first 8 are available for sampling.

See also: @sample, configiopin

seekto Set the position in the audio track

Syntax: bool: seekto(milliseconds, decoder=1)

milliseconds
The position to move to, in milliseconds
from the start of the track.

decoder The decoder that must jump to a new po-
sition (in the track that it is playing). For
models with a dual decoder, this param-
eter can be 1 or 2. This parameter is ig-
nored on models with a single decoder.

Returns: true on success, false on failure.

104 — setalarm

Notes: You must have started to play the track before you
can seek to a position. The track may be in “paused”
state, but it must be active in the decoder.

See function trackinfo to get the duration of the
track. To get the position into a playing track, you
should obtain a time stamp (function tickcount) and
subtract the time stamp at which the track started to
play.

For MP3 files, seeking to a position is accurate for
“constant bit rate” tracks (CBR); it is fairly accurate
for “variable bit rate” tracks (VBR) that have a “Xing”
header. When a variable bit rate MP3 file lacks a
Xing header, the seekto function works, but the seek
position may be inaccurate.

For Vorbis files, the seek position may be inaccurate.

See also: trackinfo, play

setalarm Set the timer alarm

Syntax: setalarm(year=-1, month=-1, day=-1,
weekday=-1, hour=-1, minute=-1,
second=-1)

year The year to match for the alarm, or -1 for
not matching the year for the alarm. This
value must be in the range 1970–2099.

month The month to match for the alarm, or -1
for not matching the month for the
alarm. This value must be in the range
1–12.

day The day to match for the alarm, or -1 for
not matching the day for the alarm. This
value must be in the range 1–31 (or the
last valid day of the month).

weekday The “day of the week” to match for the
alarm, or -1 for not matching the day of
the week for the alarm. This value must
be in the range 1–7, whereMonday is day
1.

setarg — 105

hour The hour to match for the alarm, or -1
for not matching the hour for the alarm.
This value must be in the range 0–23.

minute The minute to match for the alarm, or
-1 for not matching the minute for the
alarm. This value must be in the range
0–59.

second The second to match for the alarm, or
-1 for not matching the second for the
alarm. This value must be in the range
0–59.

Returns: This function currently always returns 0.
Notes: This function sets the alarm to go off at a specific

time. All parameters of this function are optional,
and you can switch the alarm off by leaving all param-
eters at their default value when calling the function.
The alarm may be fully specified, with a day, month
and year as well as a complete timewith hour, minute
and second. Such a timer will only go off once. An-
other usage is to set an alarm at a recurring event,
such as every day at 7:15 o’clock. For this purpose,
one would set only the hour and minute parameters
(to 7 and 15 respectively) and leave the rest at −1.
The alarm function needs the current time and date
to be set in the Starling accordingly. On a first start-
up after inserting the battery (or in absence of a bat-
tery), the device starts at midnight 1 January 1970.

See also: @alarm, setdate, settime

setarg Set an argument
Syntax: setarg(arg, index=0, value)

arg The argument sequence number, use 0
for first argument.

index The index, in case arg refers to an array.
value The value to set the argument to.

Returns: true on success and false if the argument or the in-
dex are invalid.

106 — setdate

Notes: This function sets the value of an argument from a
variable argument list. When the argument is an ar-
ray, the index parameter specifies the index into the
array.

See also: getarg, numargs

setdate Set the system date

Syntax: setdate(year=cellmin, month=cellmin,
day=cellmin)

year The year to set; if set to “cellmin”, the
default value, it is ignored.

month The month to set; if set to “cellmin”, the
default value, it is ignored.

day The month to set; if set to “cellmin”, the
default value, it is ignored.

Returns: This function always returns 0.

The date fields are kept in a valid range. For exam-
ple, when setting the month to 13, it wraps back to
1.

See also: getdate, settime, settimestamp

setiopin Set the indicated I/O pin

Syntax: setiopin(pin, status)

pin The pin number, or -1 to set the status
of all digital I/O pins using a bit mask in
status.

status The new status for the pin. This is a logi-
cal value (0 or 1) for the digital pins (0–7,
or 0–15) and a value between 0 and 1023
for the analogue pin 16. If pin is -1, this
parameter is interpreted as a bit mask
where the bits represent the desired out-
put state of the digital pins.

setled — 107

Returns: The previous state of the pin; this may either be a
logical value (0 or 1) or a bit mask, depending on
parameter pin.

Notes: Only pins that are configured as outputs can be set;
see the function configiopin for configuring pins.
After reset, all pins are configured as inputs.

Pin 16 is an analogue pin. It is hard-wired as an out-
put pin and it cannot be read. The numeric range of
0..1023 maps to 0–5V. However, if the I/O voltage is
configured to be less than 5V, the effective range is
less —for example, when the I/O voltage is 3.3V, the
effective numeric range is 0..675.

See also: configiopin, getiopin, setled, setvoltage

setled Configure a pin for input sampling

Syntax: setled(LED: led, bool: on)

led The LED, one of either:
LED Red (0)

The red LED (normally indicating
card access).

LED Green (1)
The green LED (normally indicating
power).

on true to turn the LED on, false to turn it
off.

Returns: This function always returns 0.

Notes: The LEDs on the Starling have a default function, but
it can be overruled.

Example: See sylt.p on page 8.

See also: setiopin

108 — setserial

setserial Configure the serial port
Syntax: setserial(baud=57600, databits=8, stopbits=1,

parity=0, handshake=0, port=1)

baud The Baud rate, up to 115200. The stan-
dard Baud rates are 1200, 2400, 4800,
9600, 14400, 19200, 28800, 38400,
57600 and 115200. The serial port also
supports non-standard Baud rates.
When this parameter is zero, the serial
port is closed.This parameter can be set
to autobaud, for automatic baud rate de-
tection (see the notes).

databits The number of data bits, a value between
5 and 8.

stopbits The number of stop bits, 1 or 2.
parity The parity options, one of the following:

0 disable
1 odd
2 even
3 mark (force 1)
4 space (force 0)

handshake The handshaking options; 0 for no hand-
shaking and 1 for software handshaking.

port The port to set up. The first RS232 port
is 1.

Returns: true on success, false on failure.
Notes: Port configuration only applies to real serial ports. A

USB connection that simulates a virtual serial port,
has a fixed configuration of 8 data bits, no parity and
no handshaking, at any baud rate.
Software handshaking uses the characters XOFF to
request that the other side stops sending data and
XON to request that it resumes sending data. These
characters can therefore not be part of the normal
data stream. (XOFF is ASCII 19, XON is ASCII 17).
In a data transfer both sides must agree on the proto-
col. As the settings are sometimes fixed on the appa-
ratus that you wish to attach to the Starling player,

settime — 109

the RS232 interface of the Starling is designed to fit
a wide range of protocols.

The Baud rate is a trade-off between transfer speed
and reliability of the connection: in noisy environ-
ments or with long cables, you may need to reduce
the Baud rate.

The number of data bits is usually 8, occasionally 7
and rarely 6 or 5. With 8 databits, the number of stop
bits is typically 1.

Mark and space parity codes are rarely used.

When using the autobaud feature, the port must re-
ceive a special value to establish the baud rate. For
compatibility with the modem “AT” commands, the
value to receive is the “A” (ASCII 65). The serial port
cannot be used for transmitting data until this char-
acter is received.

The USB virtual port does not need to be set up; the
port settings are implicitly 8 data bits, no parity and
no handshake. Baud rate and stop bits are irrelevant
for USB.

Example: See serial.p on page 9.

See also: @receive, receive, transmit

settime Set the system time

Syntax: settime(hour=cellmin, minute=cellmin,
second=cellmin)

hour The hour to set, in the range 0–23; if set
to “cellmin”, the default value, it is ig-
nored.

minute The minute to set, in the range 0–59; if
set to “cellmin”, the default value, it is
ignored.

second The second to set, in the range 0–59; if
set to “cellmin”, the default value, it is
ignored.

110 — settimer

Returns: This function always returns 0.
The time fields are kept in a valid range. For exam-
ple, when setting the hour to 24, it wraps back to
23.

See also: gettime, setdate, settimestamp

settimer Configure the event timer
Syntax: settimer(milliseconds, bool: singleshot=false)

milliseconds
The number of milliseconds to wait be-
fore calling the @timer callback function.
Of the timer is repetitive, this is the inter-
val. When this parameter is 0 (zero), the
timer is shut off.

singleshot If false, the timer is a repetitive timer; if
true the timer is shut off after invoking
the @timer event once.

Returns: This function always returns 0.
Notes: See the chapter “Usage” for an example of this func-

tion, and the @timer event function.
See also: @timer, tickcount

settimestamp Sets the date and time with a single value
Syntax: settimestamp(seconds1970)

seconds1970
The number of seconds that have elapsed
since 00:00 hours, 1 January 1970. This
particular date, 1 January 1970, is the
“UNIX system epoch”.

Returns: This function always returns 0.
Notes: The function getdate returns the number of seconds

since 1 January 1970.
See also: getdate, setdate, settime

setvoltage — 111

settone Tone adjust

Syntax: settone(bass, treble, bassfreq=150, treble-
freq=2000, decoder=1)

bass The gain in the range of 0 dB to +12 dB
(boost only).

treble The gain in the range of -12 dB to +11 dB.

bassfreq The knee frequency for bass adjustment.
The frequency is clamped between 20 Hz
and 150 Hz.

treblefreq The knee frequency for treble adjust-
ment; it is clamped between 1 kHz and
15 kHz.

decoder For models with a dual decoder, this pa-
rameter can be 1 or 2. This parameter is
ignored on models with a single decoder.

Returns: true on success, false on failure.

Notes: The bass enhancer uses a DSP algorithm that im-
proves the bass levels while avoiding clipping. The
algorithm is most effective with dynamical music ma-
terial, or when the playback volume is not set to max-
imum.

See also: setvolume

setvoltage Set and enable the I/O voltage level

Syntax: setvoltage(voltage, interfaces)

voltage The desired voltage on the I/O pins and
the SPI pins. The parameter is in multi-
ples of 0.1V, so 50 stands for 5.0V and 33
for 3.3V.

interfaces
This parameter selects on which inter-
faces the power pins are enabled; see the
notes.

Returns: This function always returns 0.

112 — setvolume

Notes: Some interface connectors on the Starling controller
have power output pins in addition to I/O pins. These
pins can be used to power external peripherals. The
voltage setting applies to all pins (I/O and power),
however, the power pins can be individually enabled
and disabled.

On start-up, the voltage is set to 3.3V and the power
pins on the interfaces are disabled.

Model H0440 has power output pins on the SPI bus
connector and the general I/O connector. Parameter
interfaces can be one of the following:
0 disable the power pins on all interfaces
1 enable the power pin on the SPI bus only
2 enable the power pin on the I/O bus only
3 enable the power pins on the SPI and I/O buses

Model H0430 has power output on the multi-I/O con-
nector. Parameter interfaces can be one of the fol-
lowing:
0 disable the power pin on all interfaces
2 enable the power pin on the multi-I/O bus

See also: setiopin, spi

setvolume Set the audio volume and balance

Syntax: bool: setvolume(volume=cellmin,
balance=cellmin,
fadetime=0, decoder=1)

volume This (optional) parameter holds the new
volume level, in the range 0. . .100. When
this parameter is set to cellmin, the vol-
ume is not changed.

balance This (optional) parameter holds the new
balance setting, in the range −100. . .100.
When set to cellmin, the balance is not
changed.

fadetime The duration in milliseconds to take for
the volume or balance change.

spi — 113

decoder For models with a dual decoder, this pa-
rameter can be 1 or 2. This parameter is
ignored on models with a single decoder.

Returns: true on success, false on failure.
Notes: If the output channels are muted, the new settings

take effect as soon as the audio is unmuted.
The volume of all audio outputs are affected by this
function: line-out, headphone and speaker outputs
(depending on the model, only some of these outputs
may be available). See amplifiergain to adjust the
volume of the speaker outputs only.
Fading the change in volume (or balance) happens in
the background. The script continues running while
the fading takes place. When fading is complete, the
script receives an @audiostatus event with the code
FadeCompleted. Function getvolume can also be used
to check whether a fade is in progress.

Example: See serial.p on page 9.
See also: @audiostatus, amplifiergain, getvolume, mute,

settone

spi Send SPI data
Syntax: spi(data{}, size, frequency=1, select=1,

mode=1)

data An array with the bytes to send. This
must be a packed array.

size The number of bytes in parameter data
to send.

frequency The SPI clock frequency in MHz. The de-
fault value of 1 means a 1 MHz clock.

select The SPI “chip select” line (or “slave se-
lect”) to use; see the notes. When this
parameter is set to zero, no chip select
is issued.

mode The SPI mode to use; valid values are in
the range 0. . .3. See the notes for de-
tails.

114 — stop

Returns: The last value returned by the remote device.

Notes: The Starling controller has an SPI bus with 1 or 2
chip select lines that are automatically pulled low,
in conformance with the selected SPI mode. When
using a general I/O pin for chip select, the respective
pin must be pulled low in the script, before the SPI
transfer starts.

The data that a device returns is stored in the data
array. Some devices require additional time to pro-
cess a command. In such a case, append one or more
additional zero bytes to the data array.

SPI is flexible in its specification of the clock polar-
ity and the sampling flank (the “phase”). The SPI
“mode” selects one of the four possible configura-
tions. Another method that is often used is to specify
the polarity and phase separately (these are denoted
as “cpol” and “cphase”). The relation between these
values is:
⋄ mode 0: cpol = 0, cphase = 0
⋄ mode 1: cpol = 0, cphase = 1
⋄ mode 2: cpol = 1, cphase = 0
⋄ mode 3: cpol = 1, cphase = 1

The chip select pin is toggled after every byte for SPI
modes 1 and 3, it stays low for the entire transfer for
SPI modes 0 and 2. (This is conforming to the SPI
specification.)

See also: setvoltage

stop Stop playback

Syntax: bool: stop(decoder=1)

decoder The decoder that must stop playing. For
models with a dual decoder, this param-
eter can be 1 or 2. This parameter is ig-
nored on models with a single decoder.

Returns: true on success, false on failure (no audio is cur-
rently playing).

storeconfig — 115

Notes: The difference between this function and function
pause is that a paused track may be resumed. The
stop function releases the resources for the track
and resets the audio hardware.

Example: See serial.p on page 9.

See also: pause, play

storeconfig Read device configuration

Syntax: storeconfig(const data[], size=sizeof data,
area=0)

data An array with the data to store in the con-
figuration area.

size The number of cells to store in the con-
figuration area. The maximum size if 64
cells.

area The area to store the data;
0=Flash ROM, 1=battery backed RAM.

Returns: This function currently always returns 0.

Notes: The Starling controller provides two areas of auxil-
iary non-volatile memory into which the script can
store data. These are suitable for settings that must
be retained even after a memory card is exchanged.

The size of the configuration area is small: only 64
cells. Large amounts of data should be stored on the
memory card via the file functions.

Area 0 is the Flash ROM. Data stored in this area is
kept if the both power and the battery are removed.
The drawbacks are that writing to Flash ROM is slow
and that Flash memory can be re-written 100,000
times on the average. Since the configuration area
is internal to the Starling, you need to replace the
board once the Flash ROM area becomes defective
due to exceeding the number of re-writes. This area
is intended to be updated only infrequently. (Read-
ing from Flash ROM is quick and does not wear out
the memory.)

116 — strcat

Area 1 is SRAM that is backed up with a battery.
Writing to this area is quick and frequent writes do
not wear out the memory (unlike Flash ROM). How-
ever, the memory contents are lost when the battery
is removed or when the battery has discharged below
the minimum level required for memory backup.

See also: readconfig

strcat Concatenate two strings
Syntax: strcat(dest[], const source[],

maxlength=sizeof dest)

dest The buffer holding the initial string on
entry and the resulting string on return.

source The string to append to the string in pa-
rameter dest.

maxlength The size of dest in cells. If the length
of dest would exceed maxlength cells af-
ter the string concatenation, the result is
truncated to maxlength cells.

Returns: The string length of dest after concatenation.
Notes: During concatenation, the source string may be con-

verted from packed to unpacked, or vice versa, in
order to match dest. If dest is an empty string, the
function makes a plain copy of source, meaning that
the result (in dest) will be a packed string if source
is packed too, and unpacked otherwise.

See also: strcopy, strins, strpack, strunpack

strcmp Compare two strings
Syntax: strcmp(const string1[], const string2[],

bool: ignorecase=false, length=cellmax)

string1 The first string in the comparison.
string2 The first string in the comparison.
ignorecase If logically “true”, case is ignored during

the comparison.

strcopy — 117

length The maximum number of characters to
consider for comparison.

Returns: The return value is:
−1 if string1 comes before string2,
1 if string1 comes after string2, or
0 if the strings are equal (for the matched length).

Notes: Packed and unpacked strings may be mixed in the
comparison.

This function does not take the sort order of non-
ASCII character sets into account. That is, no Unicode
“Collation Algorithm” is used.

See also: strequal, strfind

strcopy Create a copy of a string

Syntax: strcopy(dest[], const source[],
maxlength=sizeof dest)

dest The buffer to store the copy of the string
string in.

source The string to copy, this may be a packed
or an unpacked string.

maxlength The size of dest in cells. If the length of
dest would exceed maxlength cells, the
result is truncated. Note that a cell can
hold multiple packed characters.

Returns: The number of characters copied.

Notes: This function copies a string from source to dest. If
the source string is a packed string, the destination
will be packed too; likewise, if the source string is
unpacked, the destination will be unpacked too. See
functions strpack and strunpack to convert between
packed and unpacked strings.

See also: strcat, strpack, strunpack

118 — strdel

strdel Delete characters from the string

Syntax: bool: strdel(string[], start, end)

string The string from which to remove a range
characters.

start The index of the first character to remove
(starting at zero).

end The parameter endmust point behind the
last character to remove.

Returns: true on success and false on failure.

Notes: For example, to remove the letters “ber” from the
string “Jabberwocky”, set start to 3 and end to 6.

See also: strins

strequal Compare two strings

Syntax: bool: strequal(const string1[], const
string2[],
bool: ignorecase=false,
length=cellmax)

string1 The first string in the comparison.

string2 The first string in the comparison.

ignorecase If logically “true”, case is ignored during
the comparison.

length The maximum number of characters to
consider for

Returns: true if the strings are equal, false if they are differ-
ent.

See also: strcmp

strfixed — 119

strfind Search for a sub-string in a string

Syntax: strfind(const string[], const sub[],
bool: ignorecase=false, index=0)

string The string in which you wish to search
for sub-strings.

sub The sub-string to search for.

ignorecase If logically “true”, case is ignored during
the comparison.

index The character position in string to start
searching. Set to 0 to start from the be-
ginning of the string.

Returns: The function returns the character index of the first
occurrence of the string sub in string, or −1 if no oc-
currence was found. If an occurrence was found, you
can search for the next occurrence by calling strfind
again and set the parameter offset to the returned
value plus one.

Notes: This function searches for a sub-string in a string,
optionally ignoring the character case and optionally
starting at an offset in the string.

See also: strcmp

strfixed Convert from text (string) to fixed point

Syntax: Fixed: strfixed(const string[])

string The string containing a number in char-
acters. This may be either a packed or
unpacked string. The string may have a
fractional part, e.g. “123.45”.

Returns: The value in the string, or zero if the string did not
start with a valid number.

120 — strformat

strformat Convert values to text

Syntax: strformat(dest[], size=sizeof dest,
bool: pack=false, const format[],
. . .)

dest The string that will contain the formatted
result.

size The maximum number of cells that the
dest parameter can hold. This value in-
cludes the zero terminator.

pack If true, the string in dest will become a
packed string. Otherwise, the string in
dest will be unpacked.

format The string to store in dest, which may
contain placeholders (see the notes be-
low).

... The parameters for the placeholders.
These values may be untagged, weakly
tagged, or tagged as rational values.

Returns: This function always returns 0.

Notes: The format parameter is a string that may contain
embedded placeholder codes:
%c store a character at this position
%d store a number at this position in decimal radix
%q store a fixed point number at this position
%r same as %q (for compatibility with other imple-

mentations of PAWN)
%s store a character string at this position
%x store a number at this position in hexadecimal

radix

The values for the placeholders follow as parameters
in the call.

You may optionally put a number between the “%”
and the letter of the placeholder code. This num-
ber indicates the field width; if the size of the pa-
rameter to print at the position of the placeholder
is smaller than the field width, the field is expanded
with spaces.

strlen — 121

The strformat function works similarly to the “C”
function sprintf.

See also: valstr

strins Insert a sub-string in a string

Syntax: bool: strins(string[], const substr[], index,
maxlength=sizeof string)

string The source and destination string.

substr The string to insert in parameter string.

index The character position of string where
substr is inserted. When 0, substr is
prepended to string.

maxlength The size of dest in cells. If the length of
dest would exceed maxlength cells after
insertion, the result is truncated.

Returns: true on success and false on failure.

Notes: During insertion, the substr parameter may be con-
verted from a packed string to an unpacked string,
or vice versa, in order to match string.

If the total length of string would exceed maxlength
cells after inserting substr, the function raises an er-
ror.

See also: strcat, strdel

strlen Return the length of a string

Syntax: strlen(const string[])

string The string to get the length from.

Returns: The length of the string in characters (not the num-
ber of cells). The string length excludes the termi-
nating “\0” character.

122 — strmid

Notes: Like all functions in this library, the function handles
both packed and unpacked strings.

To get the number of cells held by a packed string of
a given length, you can use the predefined constants
charbits and cellbits.

See also: ispacked

strmid Extract a range of characters from a string

Syntax: strmid(dest[], const source[],
start=0, end=cellmax,
maxlength=sizeof dest)

dest The string to store the extracted charac-
ters in.

source The string from which to extract charac-
ters.

start The index of the first character to extract
(starting at zero).

end The index of the character after/ the last
character to extract.

maxlength The size of dest in cells. If the length of
dest would exceed maxlength cells, the
result is truncated.

Returns: The number of characters stored in dest.

Notes: The parameter start must point at the first charac-
ter to extract (starting at zero) and the parameter
end must point behind the last character to extract.
For example, when the source string contains “Jab-
berwocky”, start is 1 and end is 5, parameter dest
will contain “abbe” upon return.

See also: strdel

strunpack — 123

strpack Create a “packed” copy of a string
Syntax: strpack(dest[], const source[],

maxlength=sizeof dest)

dest The buffer to store the packed string in.
source The string to copy, this may be a packed

or an unpacked string.
maxlength The size of dest in cells. If the length of

dest would exceed maxlength cells, the
result is truncated. Note that a cell may
hold multiple packed characters.

Returns: The number of characters copied.
Notes: This function copies a string from source to dest and

stores the destination string in packed format. The
source string may either be a packed or an unpacked
string.

See also: strcat, strunpack

strunpack Create an “unpacked” copy of a string
Syntax: strunpack(dest[], const source[],

maxlength=sizeof dest)

dest The buffer to store the unpacked string
in.

source The string to copy, this may be a packed
or an unpacked string.

maxlength The size of dest in cells. If the length of
dest would exceed maxlength cells, the
result is truncated.

Returns: The number of characters copied.
Notes: This function copies a string from source to dest and

stores the destination string in unpacked format.
The source string may either be a packed or an un-
packed string.

See also: strcat, strpack

124 — strval

strval Convert from text (string) to numbers

Syntax: strval(const string[], index=0)

string The string containing a number in char-
acters. This may be either a packed or
unpacked string.

index The position in the string where to start
looking for a number. This parameter al-
lows to skip an initial part of a string,
and extract numbers from the middle of
a string.

Returns: The value in the string, or zero if the string did not
start with a valid number (starting at index).

See also: valstr

swapchars Swap bytes in a cell

Syntax: swapchars(c)

c The value for which to swap the bytes.

Returns: A value where the bytes in parameter “c” are ex-
changed (the lowest byte becomes the highest byte).

sysconfig Set or return system configuration

Syntax: sysconfig(SysConfig: code, value=0)

code The item from the frame header to read,
it is one of the following:
SysXtalAdjust1 (0)

The value parameter adjusts the
crystal frequency of the first de-
coder.

SysXtalAdjust2 (1)
The value parameter adjusts the
crystal frequency of the second de-
coder. This code is only available
on models with two decoders.

sysconfig — 125

SysResetID (2)
Returns the reason for the start-up
or reset. If the value parameter is
non-zero, the recorded reason is
erased.

SysCardID (3)
Returns the manufacturer ID of the
memory card (read-only).

SysCardSize (4)
Returns the size of the memory
card, in MiB (read-only).

SysParseTags (5)
The value parameter sets whether
ID3 and APE tags are parsed.

SysResetDecoder (6)
Restarts the decoder in value. Au-
dio data with an invalid format may
in rare occasions confuse further
decoding.

SysSDCard (7)
Returns whether an SD card is in-
serted (read-only).

SysSerial (8)
Returns the firmware serial number
(read-only).

SysUSBStatus (9)
Returns the USB connection status
(read-only), see the notes.

value For read/write parameters, this param-
eter holds the new value of the system
parameter, if applicable.

Returns: The return value depends on the code parameter.
Notes: The crystals of the decoders can be adjusted in incre-

ments of 2 parts-per-million (PPM). That is, setting
the SysXtalAdjust1 field to 1 will adjust the crystal
of decoder 1 to tick 2 PPM quicker.
The “reset ID” returns how the Starling started up.
The return value can be one of the following:
0 The device did not re-start since last call (or: if it
did re-start, no reason could be determined).

1 Same as 3, but most likely due to a short power
glitch.

126 — sysconfig

2 The “RESET” switch was pressed.
3 External power was applied to the device.
4 The device was reset from software, either be-
cause a non-recoverable fault was signaled, or be-
cause the script called the reset function, or be-
cause the memory card is inserted after power-
up.

5 A combination of 1 and 4, usually meaning that
the device was first powered and then an memory
card is inserted.

8 A value of 8 or higher means that a power glitch
was detected.

By default, the Starling is set up to parse ID3 tags
that appear at the start of a track, but not to decode
an APE tag. You can change this behaviour with the
SysParseTags code. The value must be one of:
0 Do not parse any tags.
1 Parse ID3 tags, but not APE tags.
2 Parse APE tags, but not ID3 tags.
3 Parse both ID3 and APE tags.

Note that parsing an APE tag is generally slower than
reading an ID3 tag, because the APE tag is positioned
at the end of the track, forcing the Starling to first
seek to the end of the file, and then back to the be-
ginning to start playing the file.

The returned values for the USB status are:
0 The USB port is not connected to a host (a PC or
workstation)

1 The USB port is connected and the Starling has
been enumerated by the host.

2 The USB port is connected, but suspended.

On models without USB connector, the returned sta-
tus is always zero.

See also: trackinfo

tickcount — 127

temperature Return the detected temperature

Syntax: temperature()

Returns: The temperature in a multiple of 1/10th of a degree
Celsius. For example, a value of 213 means a tem-
perature of 21.3◦ Celsius.

Notes: The temperature range is between −40◦ to +125◦ Cel-
sius. Note that temperatures above +80◦ Celsius are
beyond the operational limits of the Starling.

To convert the temperature to Fahrenheit, use the
equation

Fahrenheit = Celsius× 9

5
+ 32

The temperature sensor is mounted on the Starling
PCB and measures mainly the temperature of the
PCB itself. Some chips on the PCB are warmer than
the PCB temperature at the spot of the sensor.

tickcount Return the current tick count

Syntax: tickcount(&granularity=0)

granularity
On return, this parameter has the timer
precision, as the number of ticks per sec-
ond.

Returns: The number of milliseconds since start-up of the sys-
tem. For a 32-bit cell, this count overflows after ap-
proximately 24 days of continuous operation.

Notes: If the granularity of the system timer is “100”, the
return value will still be in milliseconds, but the value
will change only every 10 milliseconds (100 “ticks”
per second is 10 milliseconds per tick).

This function will return the time stamp regardless
of whether a timer was set up with settimer.

See also: settimer

128 — tolower

tolower Convert a character to lower case
Syntax: tolower(c)

c The character to convert to lower case.
Returns: The upper case variant of the input character, if one

exists, or the unchanged character code of “c” if the
letter “c” has no lower case equivalent.

Notes: Support for accented characters is platform-depen-
dent.

See also: toupper

toupper Convert a character to upper case
Syntax: toupper(c)

c The character to convert to upper case.
Returns: The lower case variant of the input character, if one

exists, or the unchanged character code of “c” if the
letter “c” has no upper case equivalent.

Notes: Support for accented characters is platform-depen-
dent.

See also: tolower

trackinfo Return track information
Syntax: trackinfo(TrackCode: code, destination{}="",

size=sizeof destination, decoder=1)

code The item from the frame header to read,
it is one of the following:
TrackTitle (0)

The track title.
TrackArtist (1)

The name of the artist or band.
TrackAlbum (2)

The album title.
TrackComment (3)

A general-purpose comment.

trackinfo — 129

TrackCopyright (4)
The copyright information on the
track.

TrackSourceID (5)
The ISRC code or any other code
that identifies the track.

TrackFormat (6)
The kind of track, see the notes.

TrackLength (7)
The track duration in milliseconds.

TrackBitrate (8)
The bit rate of the current frame, or
the average bit rate of the track, in
kb/s.

TrackSampleFreq (9)
The sampling frequency, in Hz.

TrackCue (10)
The cue time in milliseconds (si-
lence at the start of the track).

TrackSegue (11)
The segue time in milliseconds from
the start of the track (silence at the
end of the track).

destination
The buffer to hold the returned field as a
packed string. It will be set to an empty
string if no ID3 or APE tag is present or
if the requested field is not in the tag.

size The size of the destination buffer in cells.
The field is stored as a packed string, so
the number of characters that fit in the
buffer is 4 times the value of this param-
eter.

decoder On devices with multiple decoders, two
tracks can play simultaneously. This pa-
rameter is ignored on models with a sin-
gle decoder.

Returns: The value of the requested item (or 0 if the requested
item is not numeric).

130 — trackinfo

Notes: Some of the track information is read from a “tag”
that is optionally added to a track. MP3 files often
have an ID3 tag or an APE tag, both of which are
supported. Other fields are extracted from the head-
ers or binary information of tracks. See section “Re-
sources” on page 137 for details on the ID3 and APE
tags. See also sysconfig whether ID3 and APE tags
are parsed.
The Starling supports version 2 of the ID3 tag. The
support for Unicode frames in the ID3 tag is limited
to the characters of the Basic Multilingual Plane.
The TrackFormat field is one of the following values:
0 MPEG version 1, layer 3 (MP3)
1 Vorbis
2 WAVE
The track duration can only be reliably calculated
by this function for “variable bit rate” tracks (VBR)
that have a “Xing” header, and for “constant bit rate”
tracks (CBR). Some encoders create variable bit rate
tracks without Xing header.
Depending on the format of the track, the bit rate
that this function returns is either the average bit
rate of the complete track, or the bit rate at the cur-
rent position in the track. For constant bit rate files,
the bit rate is of course the same at any position in
the file.
An MPEG file consists of independent chunks, called
“frames”. Each frame has a frame header with the
above information. Due to the frames being inde-
pendent, changes in bit rate, or even sampling fre-
quency, in the middle of a track are handled trans-
parently. See the section “Resources” on page 137
for pointers to in-depth information on the MPEG au-
dio file format.
The cue and segue time need to be read from an APE
tag. Parsing APE tags must be enabled before read-
ing the cue and segue times, see function sysconfig.
See the section “Resources” on page 137 for infor-
mation on the APE tag and cue/segue times.
The SYLT (Synchronized lyrics) frame in an ID3 tag is
not returned by this function, but events or cues in

transmit — 131

the SYLT tag “fire” the public function @synch at the
appropriate times.

See also: @synch, play, sysconfig

trackpassword Set the user password for encrypted tracks

Syntax: trackpassword(const password[])

password A string containing your “user password”
to use for the encrypted audio tracks.

Returns: This function currently always returns 0.

Notes: Currently, only MP3 tracks can be encrypted.

This function sets the “user password” for decipher-
ing encrypted audio tracks. The user password must
match the password that was used for encrypting the
track. If the track was encrypted without user pass-
word, the password parameter should be an empty
string.

The encryption algorithm uses both a device-specific
128-bit “system key” and the user password to pro-
tect audio tracks. The user password is therefore an
augmented protection. Even if the password “leaks
out”, the audio files can still only be played back on
a hardware player with the appropriate system key.
The system key is embedded in the firmware in a way
that it cannot be read from the device even if a code
breaker has full access to the device.

Unencrypted audio tracks will still play as before.
Setting a user password has only effect on encrypted
tracks.

transmit Transmit a string over the serial line

Syntax: bool: transmit(const data[], length=-1,
port=1)

data The array with data to send; it must be a
packed array.

132 — uudecode

length The number of bytes in the data array. If
set to -1, the data parameter must be a
zero-terminated (packed) string.

port On devices with two or more serial ports,
this parameter specifies the port to use.
It must be 1 for the first port, 2 for the
second port. On devices that have a USB
port, the USB port identifies itself as “se-
rial” port number 0 (zero).

Returns: true on success, false on failure.
Notes: The serial port must have been set up (“opened”) be-

fore using this function. (This does not apply to the
USB virtual serial port.)
To receive data from the serial port, the script must
implement the public function @receive, see page 51
for details. Alternatively, one may call function re-
ceive to poll for serial input.
If software handshaking is enabled (see setserial),
bytes with the values 17 and 19 cannot be sent, be-
cause these signal XON and XOFF. When you need
to transfer binary data, you should encode it using a
protocol like UU-encode.

Example: See serial.p on page 9.
See also: @receive, receive, setserial

uudecode Decode an UU-encoded stream
Syntax: uudecode(dest[], const source[],

maxlength=sizeof dest)

dest The array that will hold the decoded byte
array.

source The UU-encoded source string.
maxlength The size of dest in cells. If the length of

dest would exceed maxlength cells, the
result is truncated. Note that multiple
bytes fit in each cell.

Returns: The number of bytes decoded and stored in dest.

uuencode — 133

Notes: Since the UU-encoding scheme is for binary data, the
decoded data is always “packed”. The data is un-
likely to be a string (the zero-terminator may not be
present, or it may be in the middle of the data).
A buffer may be decoded “in-place”; the destination
size is always smaller than the source size. Endian
issues (for multi-byte values in the data stream) are
not handled.
Binary data is encoded in chunks of 45 bytes. To as-
semble these chunks into a complete stream, func-
tion memcpy allows you to concatenate buffers at byte-
aligned boundaries.

See also: memcpy, uuencode

uuencode Encode an UU-encoded stream
Syntax: uuencode(dest[], const source[], numbytes,

maxlength=sizeof dest)

dest The buffer that will hold the UU-encoded
string.

source The byte array.
numbytes The number of bytes (in the source ar-

ray) to encode. This should not exceed
45.

maxlength The size of dest in cells.
Returns: Returns the number of characters encoded, exclud-

ing the zero string terminator; if the dest buffer is
too small, not all bytes are stored.

Notes: This function always creates a packed string. The
string has a newline character at the end.
Binary data is encoded in chunks of 45 bytes. To ex-
tract 45 bytes from an array with data, possibly from
a byte-aligned address, you can use the function mem-
cpy.
A buffer may be encoded “in-place” if the destination
buffer is large enough. Endian issues (for multi-byte
values in the data stream) are not handled.

See also: memcpy, uudecode

134 — valstr

valstr Convert a number to text (string)

Syntax: valstr(dest[], value, bool: pack=false)

dest The string to store the text representa-
tion of the number in.

value The number to put in the string dest.

pack If true, destwill become a packed string,
otherwise it will be an unpacked string.

Returns: The number of characters stored in dest, excluding
the terminating “\0” character.

Notes: Parameter dest should be of sufficient size to hold
the converted number. The function does not check
this.

See also: strval

version Return the firmware version

Syntax: version(FirmwareVersion: code)

code The code for the requested field, one of
the following:
VersionMajor (0)

The major version number, e.g. 1
for version 1.2 of the firmware.

VersionMinor (1)
The minor version number, e.g. 2
for version 1.2 of the firmware.

VersionBuild (2)
The build number, a unique num-
ber for a particular revision of the
firmware.

VersionOptions (3)
A bit mask with the options that are
compiled into the firmware. This
value is currently always zero.

Returns: This function returns the requested value, or zero on
error. Note that the build number is never zero.

watchdog — 135

vumeter Return the volume level
Syntax: vumeter(channel=0, decoder=1)

channel The channel monitor: 1 for the left chan-
nel and 2 for the right channel. When
setting this value to 0, the function re-
turns the weighted average of both chan-
nels.

decoder The decoder to monitor. For models that
have only a single decoder, this parame-
ter is ignored.

Returns: This function returns the VU value.
Notes: The return value pertains to the level of the audio

source. The values of this function do not change if
you adjust the volume with function setvolume.

See also: setvolume

watchdog Watchdog timer
Syntax: watchdog(seconds)

seconds The number of seconds that the script
may use for handling an event before a
full reset is activated.

Returns: This function currently always returns zero.
Notes: A watchdog timer is a guard against an infinite loop

in the script or other activity that causes the device
to hang (and become non-responsive). When setting
the watchdog, you specify the maximum time that
the script is allowed to take for handling an event. If
the script takes longer than this, the watchdog timer
assumes that the script is “stuck” and it issues a full
reset of the device.
The time-out that you allow for the watchdog should
be long enough to be confident that something has
gone awry in the script. For example, if the script
typically handles an event within a second, but may
take up to 5 seconds on rare occasions, a good value
for the watchdog time-out would be 10 seconds (two
times the longest latency).

136 — writecfg

See also: reset

writecfg Writes a text field to an INI file
Syntax: bool: writecfg(const filename[]="",

const section[]="",
const key[], const value[])

filename The name and path of the INI file. If this
parameter is not set, the function uses
the default name “config.ini”.

section The section to store the key under. If this
parameter is not set, the function stores
the key/value pair outside any section.

key The key for the field.
value The value for the field.

Returns: true on success, false on failure.
See also: deletecfg, readcfg, writecfgvalue

writecfgvalue Writes a numeric field to an INI file
Syntax: bool: writecfgvalue(const filename[]="",

const section[]="",
const key[], value)

filename The name and path of the INI file. If this
parameter is not set, the function uses
the default name “config.ini”.

section The section to store the key under. If this
parameter is not set, the function stores
the key/value pair outside any section.

key The key for the field.
value The value for the field, as a signed (dec-

imal) number.
Returns: true on success, false on failure.
See also: readcfgvalue, writecfg

Resources — 137

Resources
The home of the PAWN toolkit is www.compuphase.com/pawn/. It
is available for various operating systems (and as source code).
Note that the downloadable version is a general-purpose release,
whereas the one that comes with the Starling is configured for
the device. If you wish to update the PAWN tool chain, back up
the configuration files “pawn.cfg” and “default.inc”. These two
files contain settings specific for the Starling.
The anatomy of the MPEG files is broadly described on several
places on the web and in books. For example, see:
⋄ http://www.mp3-tech.org/
⋄ “MP3: The Definitive Guide” by Scot Hacker; March 2000;
O’Reilly; ISBN: 1-56592-661-7.

Various “application notes” on how to prepare audio fragments
for looping playback and chaining tracks are available on the
compuphaseweb site, at the abovementioned address. The num-
ber of applications notes will grow over time, so you are invited
to visit on www.compuphase.com/mp3/ a regular basis.
The MPEG file format is a collection of ISO standards. A de-
tailed specification can therefore be obtained from the ISO of-
fices. That said, the description of the “layer 3” audio sub-format
consists basically of the source code of the encode/decoder pro-
grams that were developed at Fraunhofer IIS.
The (informal) standard of the ID3 tag is on http://www.id3.org
together with links to software that reads and writes these tags.
The Starling only supports version 2 of this tag —version 1 is not
supported. Many tag editors exist, both commercial and free-
ware, but only few can generate the SYLT (Synchronized Lyrics)
tag.See www.compuphase.com for the free utility “SyltEdit”.
The APE tag is described at http://wiki.hydrogenaudio.org. In
contrast to the ID3 tag, the APE tag contents are free format,
with no mandated field names. The Starling supports a set of
the more common fields.

138 — Resources

Index — 139

Index
⋄ Names of persons or companies (not products) are in italics.
⋄ Function names, constants and compiler reserved words are in
typewriter font.

! @alarm, 7, 43
@audiostatus, 43
@eject, 43
@input, 44
@netreceive, 24, 45
@netsnmp, 31, 33, 46
@netstatus, 23, 47
@nettransfer, 34, 49
@receive, 11, 51
@reset, 52
@sample, 52
@synch, 7, 53
@timer, 6, 54

A Absolute value, 60
Alarm clock, see Timer alarm
amplifiergain, 55
APE tag, 125, 126, 130
Apple Macintosh, 17
ARP, 86
ASCII, 12
ASN.1 notation, 33
Atomic execution, 2
Audio status, 43, 55
audiostatus, 55
AutoIP, 21
AUX switch, see On-board
switches

B Back-quote, 20
Balance, 74, 112
Banker’s rounding, 69
Barix, 30
Base 10, see Decimal arith-
metic

Base 2, see Binary arithmetic
Basic Multilingual Plane, 12
Baud rate
non-standard ~, 108

Big Endian, 18
Binary files, 17
Bit rate, 26, 129
constant ~, 130
variable ~, 130

Burst mode, 26, 29

C Card eject, 44
CBR, see Constant bit rate
cell, 14
Checksum verification, 80
clamp, 56
clearioqueue, 55
Command socket, 81
configiopin, 56
Configuration area, 100, 115
Connection
incoming ~, 84
outgoing ~, 79

Constant bit rate, 104, 130
Copy file, 62
Create directory, 65
Crystal adjustment, 125
Cue time, 130

140 — Index

cvttimestamp, 57

D Data socket, 48
Debounce filter, 57
Debugging, 39, 40, 102
delay, 58
Delete file, 68
deletecfg, 58
DHCP, 21–23, 88, 89
~ lease, 49

Diagnostics, 86, 90, 95
Directory, 65, 68
Directory support, 16
diskfree, 59
DNS, 21, 82, 85, 86
Dropped digits, 14
DVD player, 11

E Eject (card), 44
Encrypted tracks, 131
End-Of-Line character, 17
Entry point, 1, 45, 52
Event Driven, 1
Event-driven programming,
58

exec, 59
Exponentiation, 67

F fabs, 59
Fade (volume), 75, 113
FAT, 16
fattrib, 60
fblockread, 60
fblockwrite, 61
fclose, 61
fcopy, 62
fdiv, 62
fexist, 62
ffract, 14, 63
fgetchar, 63
File handle, 67
File I/O, 16
File transfer, 31, 34, 81, 96

filecrc, 63
fixed, 14, 64
flength, 64
Flow-driven programming
model, 2, 5

fmatch, 64
fmkdir, 65
fmul, 65
fmuldiv, 66
fopen, 66
Forbidden operators, 14
fpower, 67
fputchar, 67
Frame header, 128
Fraunhofer IIS, 137
fread, 68
fremove, 68
frename, 69
fround, 14, 69
fseek, 70
fsqroot, 70
fstat, 71
FTP
~ server, 36, 50

Full duplex, 80
FUNC switch, see On-board
switches

funcidx, 72
Functions
~ index, 72

fwrite, 72

G getarg, 73
getdate, 73
getiopin, 73
gettime, 74
getvolume, 74

Index — 141

H Hacker, Scot, 137
Half duplex, 80
Handshaking, 52, 101, 108,
132

heapspace, 75
Host application, 72
HTTP
~ server, 31, 35, 50
~ streaming, 25, 26, 83, 92

I I/O pins, 44, 56, 73
Icecast, 20, 25–27
ID3 tag, 7, 54, 125, 126, 130
Incoming connection, 84
INI files, 20, 58, 99, 136
ISO/IEC 8859, 17
ispacked, 75

J Jounin, Philippe, 35
L Latency, 26
Latin-1, 17
Lease, 48, 83
LED, 3, 57
Link-local address, 89
~ lease, 49

Linux, 16, 40
Little Endian, 18
LiveCaster, 30

M MAC address, 77, 82
Magic cookie, 67
main, 45
max, 76
memcpy, 76
Memory card, 44
Meta-data, 27
MIB file, 32, 47
Microsoft DOS, 17
Microsoft Windows, 16, 17,
30, 95

min, 77
Modulus, 14
MP3 anatomy, 137
MP3 file format, 128
MSS, 80
MTU, 80
Multicast, 30
mute, 77

N netarp, 77
NetBIOS, 21, 86
netclose, 78
netconnect, 79
netctrl, 79
netdownload, 80, 81
netinfo, 82
netlisten, 24, 84
netlookup, 85
netping, 85
netsend, 86, 87
netsetup, 88
netshutdown, 89
netsnmpcfg, 89, 90
netsnmptrap, 90
netsocket, 91
netsockstat, 91, 92
netstream, 92
netsynctime, 94
netsyslog, 94, 95
netupload, 95, 96
Network
~ Byte Order, 46, 87
~ diagnostics, 86, 90, 95
~ status, 82
~ time, 48

Network support, 97
numargs, 96

142 — Index

O On-board switches, 44, 45,
55

Operators
forbidden, 14
user-defined, 14

Opto-coupler, 57
Outgoing connection, 79
Overlays, 38

P Pack strings, 17
Packed string, 46
Packed strings, 11
Part-per-million, 125
Passive connect, 45, 46, 84
Password
user ~, 131

Path
relative ~, 16
~ separator, 16

pause, 96
pawndbg, 40, 41
Physical link, 47
Ping message, 85, 86
play, 97
Playlist files, 20
Power amplifier, 55
Power glitch, 126
Power-up, 52
Pseudo-random numbers, 98
Public
~ functions, 72

Q Quincy IDE, 38–41

R random, 98
readcfg, 99
readcfgvalue, 99
readconfig, 100
Real-time clock, 7
receive, 100
Redirection, 49

Relative paths, 16
Rename file, 69
Reset, 52, 102, 135
~ ID, 125

reset, 101
Resource id, 97
resume, 102
Rounding, 14
RS232, 40, 51, 101, 102, 131
begin, 9
close ~, 108
end, 11
open ~, 108
~ queue, 101

RTP
~ streaming, 30, 83

S Sample frequency, 129
samplepin, 102
Sampling, 53, 103
Scaled integer, 14
SD card, see Memory card
seekto, 103
Segue time, 130
Serial port, see RS232
Server
FTP ~, 50
HTTP ~, 50
TFTP ~, 49

setalarm, 104
setarg, 105
setdate, 7, 106
setiopin, 106
setled, 107
setserial, 107
settime, 7, 109
settimer, 6, 110
settimestamp, 110
settone, 110
setvoltage, 111
setvolume, 112
Shoutcast, 20, 25–27
sleep, 58

Index — 143

SNMP, 31, 46
community, 90
trap, 90

SNTP, 94
Socket, 79
command ~, 81
data ~, 48

socket, 78
Speaker out, 55
SPI, 113
spi, 113
Square root, 71
Status
network ~, 82

stop, 114
storeconfig, 115
strcat, 116
strcmp, 116
strcopy, 117
strdel, 118
Stream
~ queue, 26–28

Streaming, 25
~ glitch, 29
HTTP ~, 25, 26, 29, 83, 92
pull ~, 26
~ queue, 26, 83
refresh ~, 29
restart ~, 27
RTP ~, 30, 83

strequal, 118
strfind, 119
strfixed, 14, 119
strformat, 120
strins, 121
strlen, 121
strmid, 122
strpack, 123
strunpack, 123
strval, 124
swapchars, 124
Switch bounce, see Debounce
filter

Switches, 1

Synchronized event, 54
Synchronized lyrics, 130,
137

sysconfig, 124
Syslog, 95

T TCP/IP, see Network support
TCP/IP protocols, 17
Telnet, 23, 24
Temperature, 127
temperature, 126
Text files, 17
TFTP
~ client, 35
~ server, 31, 35, 49
~ transfer size, 31, 35

TFTPD32, 35
tickcount, 127
Time (network), 48
Timer, 6
single-shot ~, 7
wall-clock ~, 7

Timer alarm, 43, 104
tolower, 128
Tone adjustment, 111
toupper, 128
Track resource, see Resource
id

trackinfo, 27, 128
trackpassword, 131
Transferring scripts, 40
transmit, 131
Two’s complement, 14

U Unicast, 30
Unicode, 12, 130
UNIX, 16, 17
UNIX epoch, 58, 60, 71, 74,
110

Unpacked strings, 11, 17
URL, 34, 97
~ parameters, 35, 51

144 — Index

USB, 40, 52, 101, 108, 109,
132

User password (encryption),
131

User-defined operators, 14
UTC, 48, 94
UTF-8, 17
UU-encode, 9, 11, 12, 52,
132, 133

uudecode, 132
uuencode, 133

V valstr, 134
Variable bit rate, 104, 130
VBR, see Variable bit rate

version, 134
Volume, 74, 77, 112
vumeter, 134

W watchdog, 135
Watchdog timer, 135
Wild-card characters, 18
WinAgents, 35
writecfg, 136
writecfgvalue, 136

X Xing header, 104, 130
XON/XOFF, 9, 52, 101, 108,
132

Y Yielding events, 58

	Overview
	Event-driven programming
	Modules
	Timers, synchronization and alarms
	RS232
	Packed and unpacked strings
	UU-encoding
	Rational numbers
	USB

	File system
	<No Title>
	General file I/O

	Filename matching
	INI files

	Network
	Usage
	Low-level interface
	High-level interface
	Audio streams
	Progressive HTTP versus standard HTTP
	Streaming with progressive HTTP
	Restarting a HTTP stream
	Tips for progressive HTTP streaming
	Streaming with RTP

	Transferring files
	Monitoring and configuration with SNMP
	The MIB file

	HTTP, FTP and TFTP servers
	TFTP server
	HTTP server
	FTP server

	Development and debugging
	Reducing memory requirements
	Finding errors (debugging)
	Transferring scripts over RS232 or USB

	Public functions
	Native functions
	Resources
	Index

