Wireless Relay Module

Model HO738

®
y

Programming Guide & Reference

version 1.0 — March 2024 CompuPhase



“CompuPhase” and “Pawn” are trademarks of CompuPhase.
“Linux” is a registered trademark of Linus Torvalds.

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

Copyright © 2024, CompuPhase

1€ Industriestraat 19, 1401VL Bussum, The Netherlands
telephone: (+31)-(0)35 6939 261

e-mail: info@compuphase.com

www: https://www.compuphase.com

The information in this manual and the associated software are provided “as is”.
There are no guarantees, explicit or implied, that the software and the manual are

accurate.

Typeset with TgX in the “Adobe Source” typeface family.



fii

Contents

OVRIVIBW ..ottt e 1
Event-driven programming. ......... ... 1
USBiINterface . .. ...ttt 3
IO PInS . o 3
Other tools and documents. ...ttt 3

Creating SCriPtS. ..o o 5
Programming eXamples. ... .. .. ...t 5
Pawn BlOCKS DeSigner. .. ....ouvu ittt 5
Pawn IDE . ..o e 7
Transferring scripts over USB . .......ooiniiiiii i 8

Publicfunctions....... ... 9

Native functions ... 11






Event-driven programming — 1

Overview

The wireless relay module, model H0738, has built-in functionality —as described
in its user guide. Out of the box, when you press a button that is linked to the mod-
ule, the relay is actuated for a short duration (“actuated” meaning that the relay
closes). The duration that the relay stays actuated, is set with a rotary switch on the
module.

You can override the built-in functionality by creating a script. The script responds
to events, such as button presses, ticks of a timer that you can set up, or data re-
ceived on the USB port. The relay module uses the “PAWN” scripting system.

PAWN is a general-purpose scripting language. This reference is not a guide on the
language itself —please see the companion document “The PAWN booklet — The
Language” for a tutorial.

Event-driven programming

The relay module follows an “event-driven” programming model. In this model,
your script does not poll for events, but instead an event “fires” a function in your
script. This function then runs to completion and then returns. In absence of
events, the script is idle: no function runs.

hardware &
native firmware

J 47\

@signal @timer

@start

For example, when the module receives a signal from a wireless button, this fires
the function “@signal” in the script —provided that the script has this function.
This function then runs, and can perform operations like actuating or releasing the
relay or setting a timer. After the @signal function is done, it simply returns or exits
the script. The system is now idle, but another event may wake it up. The event-
driven programming model thereby creates reactive and/or interactive programs.
The general manual “The PAWN booklet — The Language” has more details on the
event-driven model.



2 — Event-driven programming

The following script is a first example of a script for the relay module. A press
on a wireless button actuates the relay for 15 seconds; an overly simplistic script,
perhaps, but it already demonstrates an extension over the capabilities of the built-
in functionality: the rotary switch only allows durations of up to 9 seconds.

@signal(button)
{
setrelay 1 /* actuate the relay x/
sleep 15000 /* delay is in millisconds */
setrelay 0 /* release the relay */
}

When a function in the script is running, no other event can be handled. That is,
while the script is busy inside the @signal function, a new press may be queued,
but it is not executed. Only after the function has returned, will any pending event
be handled. Functions do not interrupt or pre-empt each other.

Which is also to say that, if you need to respond to other events during the fifteen-
second “sleep” of the above script, the “sleep” should instead be implemented as a
timer event.

var n_countdown

@signal(button)
{
setrelay 1 /* actuate the relay x/
n_countdown = 15

}

@timer ()

{

if (n_countdown > 0)
{
n_countdown = n_countdown - 1
if (n_countdown == Q)

setrelay 0 /* release the relay */

}

}

@start()
{

settimer 1000 /* dnterval is in milliseconds x/

}

In this second example, the @signal actuates the relay and sets a counter variable
to 15 —then it returns, without waiting. Instead, the @timer event runs every sec-
ond, and this function decrements the countdown variable until it reaches zero,
and then releases the relay.

A power-up of the relay module causes a @start event. This function therefore
runs only once, but it runs before any other function. Here, it is used to configure
the interval of the timer event.



Other tools and documents — 3

USB interface

The wireless relay module is powered through the USB connector. For transferring
a script into the module, the module must be connected to a PC or workstation with
a USB cable.

After ascriptis stored on the module, the module does not need a USB connection to
run. It only requires power, so you can use a mains power supply or a power bank.
The script remains stored (in Flash ROM) on the module when power is removed.

The exception to the rule “the module does not need a USB connection to run a
script” is when the script receives commands through the USB port, or transmits
messages back to the host. The module can be used as a USB-controlled relay.

The USB port emulates a serial port. Modern operating systems (e.g. Microsoft
Windows as of Windows 10) have built-in support for virtual serial ports. Hence,
no drivers need to be installed on the PC or workstation. For earlier versions of
Microsoft Windows, the operating system also provides a driver for virtual serial
ports, but you need to run an install in INF file to “link” the USB device to the driver.
A suitable INF file is provided in the “setup” directory below where the software kit
for the relay module is installed.

When opening a virtual serial port in a serial terminal or other application, you will
typically need to specify a baud rate and the number of data & stop bits. These are
legacy settings, and they are irrelevant in the case of the relay module —the module
will accept a connection at any baud rate and frame configuration, because it always
uses the USB protocol & speed.

1/O pins

The relay module has two general-purpose digital input/output pins. These are on a
terminal connector with three connections; the third connection is for the “ground”
signal.

The built-in functionality of the module does not use these I/O pins in any way. A
user script, however, can read these pins, and/or set them.

The I/O pins have an internal pull-up. When used as inputs, a potential-free contact
(such as a standard switch) can be directly connected between the I/O pin and the
ground.

The pins use 3.3 V TTL logic levels; when used as input, they are 5 V tolerant.

Other tools and documents

This guide focuses on two software tools for scripting the relay module, and it de-
scribes the hooks that the hardware provides for scriptable functionality. There



4 — Other tools and documents

are a few additional software utilities and resources in the development kit, which
may be useful on their own.

The utility “H0738Config” allows you to check and configure the relay module. When
the relay module is connected to a PC/workstation with a USB cable, the module
presents itself as a virtual serial port (see also section USB interface, above). How-
ever, which serial port (or COM port) gets assigned to the module, depends on the
operating system and on what other serial devices are (or have been) attached to
the PC or workstation. The configuration utility scans the system and locates the
appropriate port.

The utility also allows you to link and unlink wireless buttons, as well as placing the
button links in a particular order. It is not necessary to have the wireless buttons
at hand, when using this procedure, but you do need the serial numbers and pin
codes for the buttons.

For general information on the relay module, a quickstart guide is available in the
“doc” subdirectory below the path where the development kit is instaled. This
quickstart guide contains the specifications of the module, and has information
on its use. Note that the quickstart guide focuses on the built-in functionality of the
relay module (i.e. when no script is active).

The PAWN language is exhaustively documented in the document “The PAWN book-
let — The Language”. The tutorial section is not immediately applicable the the
relay module (because the tutorial assumes a PC or device with a display), but the
language syntax and semantics are fully described.



Pawn Blocks Designer — 5

Creating scripts

As a general note: when a script is uploaded into the relay module, the script takes
over the built-in functionality completely. That is, when you create a script that
responds to I/O pins, but omits a function (or “event block”) to respond to a signal
of a wireless button, the module will no longer respond to button presses at all,
regardless of whether the button is linked to the interface.

This guide is mostly aimed at the core PAWN scripting support built into the relay
module. There is, however, a higher-level, graphical programming tool for pro-
gramming the relay module as well: Pawn Blocks Designer. The development kit
contains both the visual Designer and the source-code based PAWN IDE.

Scripts made in Pawn Blocks Designer can also be opened in the PAWN IDE, but the
inverse is not true.

Programming examples

Several programming examples are provided together with the development kit.
You will find these in the “examples” subdirectory of where the kit is installed.

The examples are suitable for both Pawn Blocks Designer and the PAWN IDE.

Pawn Blocks Designer

With Pawn Blocks Designer, you create scripts by dragging blocks from the “tool
panel” (left section of the application window), and dropping them onto the “work-
sheet”. By grouping blocks together and setting parameters for each block, you
structure the script.

Pawn Blocks Designer avoids common programming errors, because it only allows
you to attach and group blocks in a way that is syntactically correct. While you drag
ablock, the designer visually indicates where you may drop it. In the same vein, the
designer catches some parameter errors early on. If you are new to programming,
this graphical programming method helps you get a smooth start.

The blocks are divided in four categories in the tool palette: Events, Actions, Flow
and Store. The “event” blocks reflect the events that the firmware of the device
may invoke in the script. For the relay module, we will find the “Signal”, “Start-up”
and “Timer tick” blocks, mirroring the @signal, @start and @timer event functions
used in the example on page 2.



6 — Pawn Blocks Designer

& Pawn Blocks - multiple-buttons — [m] x

M0 s E O

Events |  Actions.” Flow ' Store " Notes |+

IO-Pin (change) signal buton [ s
relay siat> G relay_sisic 0
read rotary set 0]
Signal (button) multiply 0]

timer interval g

(@ seconds ) s above ) 0]

|

decrement EXIIH by @
Cif (is J0]

Name | seconds (CIEVAREEY open |
Value 0 N

The Actions TAB has blocks that change a setting or perform an activity in the the
device: actuating or releasing a relay, toggling an I/O pin low or high, turning a
LEDonoroff, ...

The Flow TAB has only a few blocks, for program flow. Here are the if.. . else blocks
for conditional execution as well as a loop block.

In the Store category are blocks that set or change variables. These variables can
be set from literal values, or be queried from the device. If you want to check on
the status of an I/O pin, for example, you will find the appropriate block under this
TAB.

Blocks with (nearly) matching names may appear in multiple categories, depending
on how it is used. For example, to set an I/O pin, you will find the appropriate block
in the Action category, but to query the state of an I/O pin, you will need a block from
the Store TAB. Both blocks are called “io-pin”, but are distinguished by colour.

There is a fifth TAB in the tool palette: Notes. This TAB does not contain tools, but
a general-purpose edit field. It allows you to enter notes about the script: what it
does, how it functions, and any other details. The notes are stored as “comments”
in the script file, and they do not affect the functioning (or size) of the script in any
way.

The Toolbar

The toolbar of the Pawn Blocks Designer has the standard tools for New, Open and
Save, but next to that is a tool to transfer the script to the hardware device. See the



PawnIDE — 7

section Transferring scripts over USB for more information on transferring the script
to the relay module. Note that you do not need to have the relay module connected
to the PC/workstation for creating the script, but to transfer it, the relay module
needs to be connected.

Wedged between the Undo/Redo buttons and the Help button, is a tool for configur-
ing the relay module. This configuration tool provides an alternative way to link or
unlink buttons, or to clear the relay module.

Pawn Blocks Designer saves the script as PAWN source code (with attributes in com-
ments). You can therefore open, modify and rebuild the script in the PAwN IDE.
However, you may not be able to re-open the script in Pawn Blocks Designer —in any
case, the changes made in the PAWN IDE will be lost when you do re-open the script
in Pawn Blocks Designer.

Pawn IDE

You can use any text editor to write PAWN scripts, and then compile these and trans-
fer them to the device. However, the PAWN IDE provides syntax highlighting and
code completion specifically for PAWN, and it also integrates with the other PAWN
tools. Thus, we recommend that you use the PAWN IDE for creating scripts.

i Pawn - queue.p —a =
File Edit View Build/Run Tools Help
N = W= N [ B+ 9P 20T T

j queue.p E] chat.p [weekday.p ]

|.f* Priority queue (for simple text strings) */ =
#include <string>

main()
{
new msg[.text{48}, .priorityl

/* insert a few items (read from console input) */
printf "Please insert a few messages and their priorities; "
"end with an empty string\n"”
for ( ;5 )
{
printf "Message: "
getstring msg.text, .pack = true

if (strlen(msg.text) == @)
break =
| St o
= Constants =

queuesize (18) - /home/thiadmer/projects/pawn/examples/queue.p
= Global variables
queue[10][.text[10], .priority]l - /home/thiadmer/projects/pawn/examples/queue.p
queueitems - /home/thiadmer/projects/pawn/examples/queue.p
¥ Functions
| extract(item[]) - /home/thiadmer/projects/pawn/examples/queue.p | _lj
4 »
| Build | Messages | Symbols | Watches | Output | Search |

| Line 1Col 1 Y




8 — Transferring scripts over USB

The IDE is for general-purpose programming. To generate the appropriate scripts
for a specific device, the IDE uses a “Target host” configuration. These can be set
in the options; see the menu Tools / Options. For the relay module, the target host
must be set to “H0738”. You can also check the caption of the main window of the
PAwN IDE: it should say “Pawn[H0738]” (followed by the name of the active source
file).

As a programming system, PAWN consists of the “language” and a “library”. The lan-
guage is standardized and common for all applications. The library gives access to
all the functionality that the host application/device provides. That being the case,
the library is typically highly specific to the system into which PAWN is embedded.
If you pick up a different device that supports PAWN scripting, you will likely need
to get acquainted with the library of that other device, but the language stays the
same.

This library is, in turn, split into “public” functions and “native” functions. Public
functions are functions that you implement in the script, but that are called from
the firmware of the device. Public functions are the “event” functions that the sec-
tion Event-driven programming referred to. Commonly, public functions start with
the character “@”. The public functions that the relay module supports, are docu-
mented in the chapter Public functions.

Native functions are routines that are embedded in the firmware, but that you can
call from the PAwN script. In other scripting languages, these are called “foreign
functions”. There is a native function, for example, to switch the relay on or off. The
native functions supported by the relay module, are in the chapter Native functions.

Transferring scripts over USB

There are three ways to transfer a script to the relay module:

© With a command-line utility —but you need to make sure yourself that you only
transfer a valid script to the module.

¢ Using the “Build & Export” tool in Pawn Blocks Designer —but which requires that
the script is created in Pawn Blocks Designer as well.

o Using the “Transfer” button in the PAWN IDE.

In all cases, the first step is to connect the relay module to the PC/workstation with
a USB cable. All three methods automatically locate the serial port (that the module
gets assigned by the operating system). This may fail, though, when multiple mod-
ules are connected to the same PC at the same time. For programming the relay
modules, it is recommended to connect a single unit to a PC at a time.



@signal — 9

Public functions
@iopin An 10-pin toggled state
Syntax: @iopin(pin, status)
pin The pin number, 0 or 1.
status The new status, 0 for low, 1 for high.
Returns: None, the return value of this function is ignored.
Notes: This event fires when the pin transitions fro low-to-high or high-to-
low. When a pin stays high or low, no event is generated.
When a pin state is set with setiopin, the pin is configured as “out-
put”. Events are not generated for output pins.
See also: getiopin, setiopin
@receive Received data from the USB port
Syntax: @receive(const data, length)
data The received data, as a byte array.
length The number of bytes that were received (and stored in
the data array).
Returns: None, the return value of this function is ignored.
See also: transmit, section USB interface
@signal Received a signal from a wireless button
Syntax: @signal(button)
button The index of the wireless button, whose signal is
received. This is a value between 1 and 4.
Returns: None, the return value of this function is ignored.
Notes: Wireless buttons must first be linked to the relay module. Up to four

See also:

buttons can be linked. The order in which the buttons are linked, is
also the sequence number of the index parameter.

Each wireless button has a unique serial number. You can match an
index to a serial number (of a linked button) with buttonserial.

buttonserial



10 — (@start

@start Power-up or reset
Syntax: @start()

Returns: None, the return value of this function is ignored.

Notes: main is an alternative name for function @start.

@timer A timer interval passed
Syntax: @timer ()

Returns: None, the return value of this function is ignored.

Notes: This function executes after the configured delay or interval expires.

See also:

See settimer to set the delay or interval.

If the timer was set as a “single-shot”, it must be explicitly set again
for a next execution for the @timer function. If the timer is set to be
repetitive, @timer will continue to be called with the set interval until
it is disabled with another call to settimer.

settimer



random — 11

Native functions

buttonserial Return the serial number of a linked button
Syntax: buttonserial (button)
button The sequence number of the button; a value between 1
and 4.
Returns: The serial number of the button, without the letter prefix. When no

button is linked at the specified sequence number, the return value is
zZero.

Notes: The function only returns the last three digits of the serial number.
That is, if the linked button’s serial is “P123”, this function returns
123.

See also: @signal

getiopin Read the indicated I/O pin

Syntax: getiopin(pin)
pin The pin number, either 0 or 1.

Returns: The logical level of the specified I/O pin: 0 for “low” or 1 for “high”.

Notes: This function always returns the current logical level of the pin, re-
gardless of whether the public function @iopin is defined.
On start-up, the I/O pins are configured as “input”. If a pin was con-
figured as “output” (by setiopin), calling this function re-configures
it as “input”.

See also: @iopin, setiopin, section I/O pins

random Return a pseudo-random number

Syntax: random(max)
max The limit for the random number.

Returns: A pseudo-random number in the range 0. .. max-1.



12 — rotaryswitch

rotaryswitch Read the rotary switch
Syntax: rotaryswitch()
Returns: A value between 0 and 9 (the setting of the rotary switch).
See also: getiopin
setiopin Set the indicated I/O pin
Syntax: setiopin(pin, status)
pin The pin number, either 0 or 1.
status The new status for the pin. This is a logical value: 0 or
1.
Returns: This function always returns 0.
Notes: On calling setiopin, the specified pin will be configured a “output”.
(After reset, all pins are configured as inputs.)
Logic outputlevels of the I/O pins are 0 V for “low” and 3.3 V for “high”.
See also: getiopin, setled, setrelay, section I/O pins
setled Configure a pin for input sampling
Syntax: setled(status)
status Either 1 (“LED on”), or 0 (“LED oft”). When setting this
parameter to -1, the LED follows the state of the relay: it
is on when the relay is actuated and off when the relay
is released.
Returns: This function always returns 0.
Notes: There are two LEDs on the module; the green LED is hard-wired to
indicate “power”. This function controls the red LED.
By default, the state of the LED follows the state of the relay. When
using this function to switch the LED on or off, this default is over-
ruled.
The red LED is also used to indicated the progress of the button “link”
procedure (after pushing the “connect” switch on the board. This
function does not change the link procedure; the red LED will still
blink after pressing the “connect” button.
See also: setiopin, setrelay



tickcount — 13

setrelay Configure a pin for input sampling

Syntax: setrelay(status)
status Either 1 (relay actuated —meaning that the relay is

closed), or 0 (relay released —meaning that it is open).
Returns: This function always returns 0.
Notes: By default, the red LED lights up while the relay is actuated; this can
be overruled with setled.
See also: setiopin, setled
settimer Configure the event timer
Syntax: settimer (milliseconds, bool: singleshot=false)
milliseconds
The number of milliseconds to wait before calling the
@timer callback function. Of the timer is repetitive,
this is the interval. When this parameter is 0 (zero), the
timer is shut off.

singleshot If false, the timer is a repetitive timer; if true the
timer is shut off after invoking the @timer event once.

Returns: This function always returns 0.

See also: @timer, tickcount

tickcount Return the current tick count

Syntax: tickcount()

Returns: The number of milliseconds since start-up of the system. For a 32-bit
cell, this count overflows after approximately 24 days of continuous
operation.

Notes: This function will return the time stamp regardless of whether a timer

See also:

was set up with settimer.

settimer



14 — transmit

transmit Transmit data over the USB port
Syntax: bool: transmit(const data, length=-1)
data The data to transmit, as a byte array.
length The number of bytes to transmit, or -1 if the data is a
zero-terminated (packed) string.
Returns: true on success, false on failure.
See also: @receive, section USB interface
version Return the firmware version
Syntax: version()
Returns: The “build number” of the firmware in the relay module.



Index

Index

15

! @iopin, 9
@receive, 9
@signal, 9
@start, 10
@timer, 10

A Atomic execution, 2

B Baud rate, 3
Block categories, 5
Built-in functionality, 5
buttonserial, 11

C COM port, see Serial interface
Configuration (IDE), 7
Configuration utility (device), 4

D Development kit, 3, 5
Device configuration, see Configura-
tion utility

E Entry point, 1, 10
Event Driven Programming, 1

F Firmware version, 14

G getiopin, 11
GPIO, see I/0O pins

I I/O pins, 3, 9, 11, 12
IDE, see Pawn IDE

L Language guide, 1
LED, 12
Linked button, 9

N Native functions, 8, 11

P Pawn IDE, 7
Pseudo-random numbers, 11
Public functions, 8, 9

R random, 11
Relay, 13
Rotary switch, 12
rotaryswitch, 11

S Serial interface (COM), 3, 9, 14
Serial number, 4, 11
setiopin, 12
setled, 12
setrelay, 13
settimer, 13

T Target host (IDE), 7
tickcount, 13
Timer, 10, 13
Toolbar, 6
Transfer script, 6, 8
transmit, 14
Tutorial, 1

U USB port, 3, 9, 14

V version, 14
Visual Programming, 5



	Overview
	Event-driven programming
	USB interface
	I/O pins
	Other tools and documents

	Creating scripts
	Programming examples
	Pawn Blocks Designer
	The Toolbar

	Pawn IDE
	Transferring scripts over USB

	Public functions
	Native functions
	Index

