
CompuPhase White Paper

Rosette — Internationalization through message catalogs
Nearly all software presents a language-based
user interface: any program containing prompts,
responses, menus, status lines or tool-tips falls
into this category. Language-based software
benefits from translation to the (major) lan-
guages of the countries that it ships to. A lot of
software that one finds on the shelf today is
already available in multiple languages. This
white paper presents “Rosette”: a library for
software developers that brings multi-lingual
support into your applications.

Adapting a software product to different lan-
guages and cultures is a process called local-
ization. To make localization efficient, the first
step is to internationalize the source codes of a
software product. Internationalization involves
separating the language and culture-dependent
information from the logic. Localization goes
beyond translating an application: date, time
and currency formats also need to be adapted
for an application to be usable in another region.

When speaking about software, the most
prevalent products are desktop applications:
word processors, accounting programs, database
clients, etc. Software is broader than what runs
on the desktop, though, and the need for inter-
nationalization applies to most other products
too. For example, large server applications that
deliver their services over the Internet must be
prepared to serve in multiple languages at the
same time. At the other end of the spectrum,
customer goods such as appliances and audio-
visual equipment are just too expensive to
develop for the national market only. Embedded
software, therefore, needs to be internationalized
too.

First question: Why?
Translating an application takes a fair amount
of effort, regardless of how you tackle it. It may
also require the help of persons that you do not
employ in your organization: native speakers of
the foreign tongues. Those individuals are
probably not familiar with your product when
they start the translation, so you also need to
assist the translators to get knowledgeable
about it. A misunderstanding of the purpose of
a menu item can easily lead to an incorrect
translation. An example of this was the transla-
tion of the menu item “Display options” in the
Dutch version of IBM's graphical DOS shell: it
was translated to mean “show the options”, but
what the menu was really about were the
“options for the display”.† A translation error is
quite often viewed as a stupid error, one that is
so obvious that it should have been spotted
before deploying the product.

Because of the effort required to translate a
product and the risk for wrong translations,
some wonder whether translation and localiza-
tion is worth the effort. Cannot English be seen
as the Lingua Franca‡ of modern times? Or in
more popular terms: why can't they just use
English? Rather than answering these rhetoric
questions, let’s just observe that a program that
is available in a local language, has a compet-
itive edge over another program which is not.
Computer magazines in Europe (and probably
elsewhere too) mention the lack of a localized
version of an application as a negative note; in
product comparisons, points get subtracted.*

† This is one out of many examples where a mis-
translation causes confusion, and one out of many
where the user is left wondering if the product had
been hastily translated and then just “dropped in the
market” without further testing.
‡ Lingua Franca, the “language of the Franks”, is a
medieval mixture of various languages used for trade
contacts. This “broken language” allowed people
from various regions to communicate at a basic level
—much like broken English does today.
* To quote former German chancellor Willy Brandt:
“If I'm selling to you, I speak your language. If I'm
buying, dann müssen Sie Deutsch sprechen.”

Page 1 of 6

The name Rosette refers to the granite stela found
near the small Egyptian town Rashid, which
Napoleon's army called “Rosette”, and that
contains a decree of the priests of Memphis in
three scripts: hieroglyphs, Demotic (an Egyptian
script used at the time that the stone was carved)
and Greek. Known as “pierre de Rosette” or
“Rosetta stone”, its discovery by the French
lieutenant Pierre Bouchard, became symbolic for
the break-through, in 1822 by the French
Egyptologist Jean-François Champollion, in the
deciphering of hieroglyphs.

CompuPhase White Paper

Second question: How?
Once we have decided to make an application
available in multiple languages, we have to
decide on an approach to tackle this issue. You
could, of course, go through the source code of
the application, translate all text strings and
recompile; you would essentially end up with
two applications, one in either language, built
from two different sets of source code. However,
for sake of maintenance, you will want to choose
a method that separates the language from the
logic and build all localized versions of the
application on a single source code base.

Other decisions are not as clear cut. It might
be tempting to pack all texts of all supported
languages inside the application as resources.
Every separate file that you remove from the
package removes a possible “support issue”. On
the other hand, it also makes it harder to add
translations to a product that is already
distributed, as the application needs to be
rebuild to contain the new translations. And
there are other choices to make, like “one file
with all translations” versus “a separate file per
language” or “indicate each string with a unique
numeric key” versus “use strings in one
language as the message ID for matching strings
in other languages”. Which approach fits best
depends on the application and your develop-
ment methods and resources.

It will not come as a surprise that many tools
and libraries to assist in translation already
exist, and that many of those impose their
selection for the various choices on you. Except
Rosette: the Rosette library is designed to be
flexible and adaptive to different schemes of
development. Rosette is a portable, reentrant,
multi-platform internationalization library that
supports multiple programming languages and
has optional Unicode support. Rosette is one of
the very few internationalization libraries that
are suitable for embedded systems, due to its
portability and its deterministic behaviour (plus
that Rosette does not rely on dynamic memory
allocation).

The developer’s view
Internationalizing an application with Rosette
has two parts: a set of translated messages and a
set of functions. The translated messages are the
language resource data for the application and
this data may be in text or binary form, and
either as a separate file or embedded in the
application itself. Whatever its format, the
message collection is called the “catalog”. The
functions in the Rosette library manage the
catalog and provide the core functionality to
retrieve the appropriate message in the selected
language. Rosette allows multiple languages in
a single catalog and a catalog may be a plain
text file: no conversion (or compilation) of the
catalog is required before its use.

Page 2 of 6

The catalog file format
The message catalog is a text file, or at least it starts as a text file —it may optionally be compiled to a binary
file or resource. In this text file, there is for every message one line in each language, with the language
identified by a two-letter code, preferably conforming ISO 639 (en = English, fr = French). Some languages
have developed several minor variants, such as “British English” and “American English”, which are not
recognized as separate languages by ISO 639. If so desired, one can use the 2-letter “country code”(ISO 3166)
instead of the language code (i.e. us = US-English and gb = The Queen's English). For locale-dependent
information, you can use a “tagging” system.

Here is a snippet of a catalog with two messages in three languages:
// source: http://www.geocities.com/nodotus/hbglass.html
en: I can eat glass, it does not hurt me
fr: Je peut manger du verre, cela ne me fait pas mal
nl: Ik kan glas eten, het doet me geen kwaad

source: http://www.trigeminal.com/samples/provincial.html
en: Why can't they just speak English?
fr: Pourquoi, tout simplement, ne parlent-ils pas français ?
nl: Waarom spreken ze niet gewoon Nederlands?

In the catalog file, leading white space is on a line ignored; empty lines and lines starting with a double slash
(“//”) or with a hash sign (“#”) are ignored; after the 2-letter language code, the first (optional) space behind
the colon is ignored. For every message, one particular language should come before all translations: this is
the key language. In this snippet, the key language would be English (“en”). The catalog also supports a few
special characters (or escape sequences) for embedded line-breaks or TAB alignment.

CompuPhase White Paper

To add multi-lingual support to an applica-
tion, the first step is to go through the source
code and mark all hard-coded text (strings) that
need to be translated to other languages.
Marking such strings is a simple matter of
folding the string inside a function; for example,
the string "the quick brown fox" would
become rsmsg("the quick brown fox").
Depending on the application, there may be only
few or many of such strings. The Rosette manual
gives suggestions for performing this stage
efficiently.

A Rosette utility, rsverify, then creates an
initial catalog with only one language. During
maintenance, this same utility can also tell you
which messages were newly added. This catalog
is what you send to the translator, preferably
along with the executable application.

The developer has to perform one last step
before the application is internationalized: the
Rosette library must be added to the project and
the source code must also be updated to
initialize and open the catalog of choice.
Depending on the programming environment, it
may be necessary (or convenient) to add a few
“wrapper functions” or macros.

Because of the flexibility of Rosette, the
process of internationalization with Rosette is
variable, too. You may want to add a pre-
processing step between the “raw” catalog and
the one that your application will ultimately use,
and you may want to convert the catalog to a
binary file or resource after it comes back from
the translators. Depending on how you use
Rosette, your application needs to be adapted or
extended. The Rosette library provides the
routines to do this, and the manual explains in
detail how to use the functionality of Rosette to
perform a specific task.

After the application has been internation-
alized and the first translations are available,
maintenance has its own chores: messages
change or become redundant, and new messages
must show up in the catalog. Keeping the
“master” catalog up to date becomes a task of its
own. To make you catch catalog problems early
in the process, Rosette provides effective
diagnostics and it can display statistics about the
message usage.

The translator’s view
The catalog is, in its source form, a text file, in
ASCII/ANSI or UTF-8 encoding. The require-
ments for translating a catalog are technically no
more than Windows NotePad or any other basic
text editor. However, for the sake of consistency
and speed of translation, a translator will prefer
to process the catalog with specialized Computer
Aided Translation (CAT) tools. For the purpose of
exchanging files between the Rosette library and
CAT software, Rosette comes with conversion
utilities for comma-separated values (CSV),
gettext PO and XLIFF formats.

In translating software from a catalog with
the isolated messages, one of the pitfalls is that
the translator sees the messages out of context.
It is clear that depending on the context, a
message in one language must sometimes use a
different wording. In the introduction of this
white paper, we already presented the example
“Display options” —a prompt that is ambigu-
ous when seen in isolation. By allowing the
(“text file” format) catalog to be reloaded
without needing to rebuild the application, a
translator may verify the context in which the
translated messages occur by simply running
the application after copying the newly created
catalog to the application’s folder.

The language spoken in a country or region
is just one part of the “locale” information,
albeit an essential part. Other information, such
as the formatting of dates, numbers and curren-
cies must be handled according to the local
conventions too. These conventions are not tied
to the language; for example, numbers are
written with a decimal comma in Spain and a
decimal period in Mexico —but Spanish is
spoken in both countries. Rosette handles
locale-dependent information through specially
tagged messages. This allows a single catalog to
be used for both the Spanish and Mexican
locales.

Features and traits
To look up a message in a language, the
message must have a kind of unique identifier.
Here, you have a choice: Rosette can use the text
of the message itself as the “message ID”, but it
also allows you to use a numeric constant or a
symbolic tag. The former solution, text as the ID,
is often convenient, but it also means that if the

Page 3 of 6

CompuPhase White Paper

message changes, both the application and the
catalog must be adapted. With a separate
numeric key or tag, you would only have to
change the catalog, but at the cost of having to
maintain a list of keys/tags that match a

message, and both the source code and the
catalog must agree on what message goes with
each. Numeric keys are somewhat specific to
C/C++ (because of the use of the preprocessor)
but tags can be used with any language.

Page 4 of 6

The intricacies of internationalization
Unfortunately, it is often thought that translating a piece of software involves little more than replacing each
“string” in the original application by a string in another language. This is an underestimation. Issues like
character sets, word order, rules for singular and plural forms of a message, and formatting dates, wall-clock
time, numbers and currencies must all be handled.

Often, parameters need to be inserted in messages —such as names of users or files. Such functionality is
already provided in any programming language, but only using a fixed sequence. The Rosette library lets you
re-arrange the order of “inserts”, as the word order in a sentence may be different across the supported
languages. Rosette does this via numbered placeholders in the messages in the catalog file, starting at one. The
figure below shows an error message from a catalog with two placeholders and its translation in German.

en: Not enough memory to %1 the record %2.
de: Ungenügendem Speicher um Datensatz %2 zu %1.

In English, values use a decimal period and thousands are separated by a comma. In the Netherlands and
Germany, the decimal separator is a comma and the thousands separator is a period. In France, the decimal
separator is also a comma, but the thousands separator is a thin non-breaking space, or none at all, in absence
of thin spaces. The grouping of the whole number part of the value does not have to be by 3 digits (thousands
separation); in some Asian countries the values are grouped by 4 digits (multiples of ten-thousand). Rosette’s
number and currency reformatting is quite flexible.

Locale Example
Great Britain 12,345.67
Netherlands 12.345,67
France 12345,67

Related to formatting messages with numbers is the conditional forming of plural forms. For example, when
your application displays “10 matching records” in its status bar for a database query that indeed returns 10
records, you will want it to show “1 matching record” when there is only a single result. Since, in English you
obtain the plural form of a word by attaching an “s” to the singular form of the word, programmers have used
tricks like the line below, where the placeholder %s is replaced by either an “s” or by an empty string:

printf(“%d record%s found”, count, (count != 1) ? “s” : “”);

In the above example, the idea is to print the word “record” when the count is 1 and “records” for any other
count. Imagine what happens when the target language is “de”: the plural form of Datensatz (the German
word for “record”), is “Datensätze” —it is certainly not “Datensatzs”. The umlaut on the second “a” also
demonstrates that no general purpose rule will ever construct a plural form from a singular form correctly.

Appending an “s” to a word creates a plural form in French too, but the example is still wrong in a more
subtle way: you have to use the singular form for a count of zero in French. Also note that the “trick” only
works for sentences lacking a finite verb —but these are regarded as grammatically incorrect in France.

The proper solution is to enter the messages with singular and plural forms explicitly in the catalog, and as
complete messages, as is illustrated below. The catalog contains the full messages for forms with an explicit
count. This need not be limited to zero and one; a few languages, like Arabian and Slovenian, have an
additional dual form. There is no need to specify the same plural forms for all messages; in this instance, there
are exceptions for the counts 0 and 1 in French, but only for 1 in English and German.

en : %1d records are found
en[1]: %1d record is found
de : %1d Datensätze sind gefunden
de[1]: %1d Datensatz ist gefunden
fr : %1d lignes sont trouvés
fr[0]: %1d ligne est trouvé
fr[1]: %1d ligne est trouvé

The programmer can now use the plural form in the key language (“en” in the above example) and let Rosette
choose the appropriate singular or plural form. For example, the earlier printf statement becomes:

rsfmti(output, sizeof output, “%1d records are found”, count, count);

CompuPhase White Paper

In practice, multi-lingual support must often
be built into an application which was initially
developed without giving internationalization
much thought. Obviously, adding multi-lingual
support after the fact takes more effort than
building it in from the beginning —but in many
projects this is the proverbial wisdom of hind-
sight: very true, but not very helpful. Rosette's
feature of using the messages in the original
language to look up messages in any of the
translations makes the path easier.† However,
there is also a risk: depending on the context,
two messages that would use the same wording
in English need to be translated to different
messages in the other language. Using the
original message is now an ambiguous criterion
for looking up translations (assuming that the
original language is English).

Rather than completely abandoning the
concept of using the original messages for
looking up translations,‡ Rosette allows the
conflicting messages to be tagged with a unique
symbolic key. The translated message is then
looked up through this tag. You may tag all
messages, but doing so with only the conflicting
messages will get you to the finish line earlier.

Rosette is a C library and it comes as a
precompiled component (DLL) as well as with
full source code. In the Microsoft Windows
environment, you can use Rosette with any
programming language or development system
that can call a DLL. The Rosette manual gives
examples for C, C++ Delphi and Basic.

For Microsoft Windows programs, among
the first things that you will want to translate are
the menus and dialogs. In fact, there exist
software translation products that focus solely
on the resource data. But even when using a
source code oriented library such as Rosette is it
straightforward to translate menus and dialogs
in an application —plus that it also handles non-
resource data, which is off-limits for resource
translation programs.

Rosette is a non-intrusive library: it does not
require any specific platform or framework and
does not force you to switch to a different

† Rosette also provides extensive diagnostics and
message statistics modes to help developers catch
missing translations or changed source messages.
‡ Rosette supports a mode for using only numeric
message IDs.

“string library” or character encoding. When it
comes to international character support, there
are three options in common use: codepages,
Unicode and UTF-8. Rosette can work with all
three; it does not support character set
conversions, however.

Being non-intrusive also brings forth some
limitations of the library. By not replacing the
string library that your applications already use,
Rosette cannot provide support for locale-
dependent sort order. Support for directional
reformatting (right-to-left scripts, commonly
called bidirectional languages) is not present
either. This is a conscious choice: support for
these aspects is independent from message
look-up. Rosette can work together with other
libraries that provide bidirectional support or
sort orders of non-alphabetic scripts.

On the technical front, an important note is
that the functions of the Rosette library are
reentrant (except for the initialization and clean-
up functions). The advantage of reentrant
functions is that they are implicitly thread-safe.
Although you can protect concurrent access to
non-reentrant functions with semaphores or
critical sections, it also carries a risk of priority
inversion (if threads have different priorities).
You should be able to do a message lookup
without giving it a second thought, and a
reentrant library is then the more robust design.

Memory management in Rosette gives you a
palette of choices again: you can use static
memory, explicitly handled dynamic memory
and garbage-collected dynamic memory. The
last option is the most convenient for the
developer, but it also requires the most
resources from the operating system.

The catalog starts as a text file, encoded
either in ASCII/ANSI or UTF-8, but you have
the option to convert it to a binary file, a binary
resource or a C/C++ source code file that allows
you to directly compile the catalog into the
application. This latter part is convenient for
embedded systems that have to do without file
system or resource manipulation support. The
catalog is “ROM-able”, by the way.

The existence of similar products as Rosette
was already mentioned. How, then, does
Rosette compare with catgets, gettext,
Microsoft's Message Compiler or the wide
spread use of INI files with message

Page 5 of 6

CompuPhase White Paper

key/translated string entries? The catgets
library is difficult to use: keeping the numeric
message IDs match between the catalog and the
source code is a burden. Microsoft's Message
Compiler improves it by using symbolic
constants, but it is still not as easy as simply
using the string in a “key language” as the ID for
the message, as do gettext and Rosette. Apart
from this, Microsoft's design ties the system to
C/C++ and, of course, it is only available on
Microsoft Windows. The gettext library also
has a hard link to C/C++ because it redefines the

sprintf() function family. By not supporting
“tags”, gettext cannot solve conflicts where
messages that use the same wording in English
need to be split into different messages in other
languages. Finally, gettext’s message look-up
functions are also non-reentrant, because they
store information in an internal “cache”. Using
INI files for translation is indeed simple, but its
performance is low and its capabilities are
limited: it supports neither message
reformatting nor plural forms, both of which are
absolutely essential for decent translations.

Résumé
Rosette is a library and a set of tools that assists developers in making their applications multi-lingual.
The applications will still need to be translated, by native speakers of the other tongues, but with
Rosette, that task takes less work and the risk of translation errors is reduced.

As detailed in this white paper, Rosette is general purpose and flexible. It is suitable for embedded
systems, as well as software running on large servers. CompuPhase, existing since 1986, has used
many of the common approaches to internationalize software products before arriving at Rosette. The
Rosette library builds on a vast “hands-on” experience in building and maintaining multi-lingual
applications —either from the start or adding multi-lingual support to an application “after the fact”.
Rosette's goal is to make message translation convenient for both the programmer and the translator,
while supporting several platforms and multiple programming languages.

Page 6 of 6

• For all 32-bit versions of Microsoft Windows (including
Windows 98).

• Unicode, UTF-8 and ANSI/ASCII are supported.
• Interface files for C/C++, Delphi, Visual Basic and others.

1e Industriestraat 19-21 — 1401 VL — Bussum —The Netherlands
Telephone: +31 (0)35 6939261
Facsimile: +31 (0)35 6939293
Internet: http://www.compuphase.com

info@compuphase.com

http://www.compuphase.com/

