
Pawn

embedded scripting language

Ethernet interface
for the

H0420 MP3 controller

Version 1.7

December 2008

ITB CompuPhase

ii

“CompuPhase” is a registered trademark of ITB CompuPhase.

“Linux” is a registered trademark of Linus Torvalds.

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

Copyright c© 2007–2008, ITB CompuPhase
Eerste Industriestraat 19–21, 1401VL Bussum, The Netherlands (Pays Bas);
telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The information in this manual and the associated software are provided “as
is”. There are no guarantees, explicit or implied, that the software and the
manual are accurate.

Requests for corrections and additions to the manual and the software can
be directed to ITB CompuPhase at the above address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11

points.

iii

Contents
Introduction . 1

Usage . 1
Low-level interface .2
High-level interface . 4
MP3 audio streams . 5
Transferring files . 12
Monitoring and configuration with SNMP .13
HTTP, FTP and TFTP servers . 16

Function reference . 19

Public functions . 19
Native functions . 24

Index . 39

iv

1

Introduction

The H0420 Ethernet interface is a combination of an extension board (hard-
ware) and extended firmware (software). The extension board plugs onto
the H0420 MP3 controller and it provides a RJ-45 connector for a standard
Ethernet network cable. The extended firmware contains a set of network
functions that you can use from the script.

No network functionality is hard-coded in the Ethernet interface. All net-
work functionality is under control of the script. In its current release, the
network interface supports the TCP/IP protocol suite with the following
functionality:
⋄ TCP/IP core protocols (IP version 4), including the ARP, ICMP and UDP

protocols.
⋄ Support for dynamic configuration through DHCP, and AutoIP in absence

of a DHCP server; lease times are handled.
⋄ Support for multicast IP addresses and group memberships.
⋄ For interoperability with Microsoft Windows hosts, NetBIOS Name Server

requests are handled; DNS look-up is also present.
⋄ PING transmit & response handling, for network diagnostics.
⋄ SYSLOG client, for sending informational messages.
⋄ Support for the SNTP (network time) protocol for synchronizing the in-

ternal clock (the firmware supports both a time client and a time server).
⋄ Flexible and extensible SNMP agent support.
⋄ TFTP client and server for simple file transport (as well as a simple form

of “push” streaming).
⋄ HTTP client, for downloading files; HTTP server (single session) for status

or configuration.
⋄ FTP server (single session) for file transfer.
⋄ Shoutcast / Icecast client for streaming MP3 audio from the network

(“pull” streaming).
⋄ RTP protocol for “push” streaming of MP3 audio from the network.

Usage

All scripts that use the network features must include the definition file (or
“header file”) for the network functionality. These scripts should have the
following line near the top of the script:

2 � Low-level interface

Listing: Initializing the network interface

#include <tcpip>

Before using any of the network functions, the network interface must be
initialized. This is done through the function netsetup. There are two ways
to use netsetup: you can either give only a host name and have netsetup

look up the network configuration from a DHCP server, or you can supply
all the necessary information for a “fixed addressing” scheme. Examples are:

Listing: Initializing the network interface

// host name is MP3-Ctrl; IP address, gateway, DNS and netmask are

// looked up from DHCP

netsetup .hostname = !"MP3-Ctrl"

// host name is H0420, IP address = 192.168.0.123,

// gateway = 192.168.0.77, DNS = 192.168.0.99, netmask = 255.255.255.0

netsetup !"192.168.0.123", !"192.168.0.77", !"192.168.0.99",

!"255.255.255.0", !"H0420"

If desired, the network can be cleaned up again with function netshutdown.
However, this is rarely needed.

When initializing the network using DHCP, note that function netsetup

returns before the DHCP handshaking is complete and the suitable addresses
have been assigned. When the network status changes —such as DHCP
completion, the script receives the event @netstatus. By implementing
this function, the script can monitor network status, network errors and
transfer progress. The function netinfo returns dynamic and static network
information.

Low-level interface

The network interface provides function for the low-level TCP/IP interface
and for a selected set of the higher level protocols. The lower level inter-
face allows to send and receive raw messages or data between the H0420
and external devices. Both the connection oriented TCP protocol and the
datagram protocol UDP are supported. For opening a connection, use the
function netconnect and for closing it use netclose. Only TCP connec-
tions need to be opened; UDP messages can be sent and received without
opening a port. For sending a message, use netsend; and incoming data will
be received by the event function @netreceive.

Low-level interface � 3

If you wish to act as a server, rather than a client, the script should call
netlisten rather than netconnect. TCP connections that are “listened”
to also need to be closed with netclose. For UDP servers, you must also
call netlisten (unless you wish to listen to the default port 9930), but there
is no need to close the connection.

Below is a skeleton of a script that implements a simple Telnet server. A
Telnet server sets up a listening connection at port 23 and exchanges text
messages with a Telnet client. The messages that a server receives are usually
commands.

Listing: Telnet server skeleton

#include <tcpip>

@reset()

{

netsetup /* configure the network using DHCP */

}

@netstatus(NetStatus: code, status)

{

switch (code)

{

case NetAddrSet:

{

/* set up a listener on successful initialization */

netlisten 23, TCP

}

}

}

@netreceive(const buffer[], size, const source[])

{

if (size == 0)

{

/* special case, remote host just connected;

* print a welcome message

*/

netsend !"Welcome\r\n# ", _, source

}

else

{

/* normal case, data received */

static line[100 char]

strcat line, buffer

if (strfind(line, "\r") >= 0 || strfind(line, "\n") >= 0)

{

/* we have received a full line, process it here */

(. . . code omitted . . .)

4 � High-level interface

line[0] = ’\0’ /* prepare for next buffer */

}

}

}

The script starts with setting up a network. Since the network is set up
without any configuration options, the host must negotiate an IP address
and other options via DHCP (if available) or AutoIP. When this negotiation
ends, the script receives the @netstatus event with code NetAddrSet and
the network configuration is complete. At this point, the script can set up a
listener (function netlisten). As a side note: when using fixed addressing,
network configuration is complete immediately after the call to netsetup.

Function @netreceive gets an event if data is received. The data may arrive
character by character, or it may arrive is blocks or text lines (this is how the
Telnet protocol works). The @netreceive function must collect the blocks
of data and process any full line that is received. Any response from the
script can be sent via netsend.

Immediately after a remote Telnet client connects, @netreceive also receives
an event, but without any data. It is up to the script to decide how to
respond. For a Telnet server, it is common to print a welcome message and
a prompt.

Not shown in the skeleton is the way to close the connection. If the remote
Telnet client closes the connection, there is nothing for the script to do: the
listening socket will be notified about the closed connection. If the script
must take the initiative to closing the connection, however, it must call
netclose on the socket that was returned by the earlier call to netlisten.
If you wish to accept a subsequent (new) incoming connection after having
closed the active connection, the script should call netlisten again after
the call to netclose.

High-level interface

The firmware has built-in protocol handlers for the following services:
⋄ TFTP client netdownload or netupload
⋄ TFTP server @nettransfer

⋄ HTTP client netdownload

⋄ HTTP server @nettransfer

MP3 audio streams � 5

⋄ FTP server @nettransfer

⋄ Shoutcast / Icecast client netstream or play
⋄ RTP client netstream or play
⋄ Syslog client netsyslog

⋄ SNTP client netsynctime

⋄ SNTP server automatic
⋄ ICMP client (ping only) netping

⋄ ICMP server (ping only) automatic
⋄ SNMP agent @netsnmp

⋄ SNMP traps netsnmptrap

To enable a file server, the script must implement the function @nettrans-

fer. The SNTP and ICMP servers are always enabled, and they allow a
host on the network to query the time of the H0420 device and to “ping”
the H0420. Function netdownload allows to download from both HTTP and
TFTP servers. The function gets the protocol to use from the URL.

When you call the functions netsynctime or netping, the reply of the re-
mote host is received as an event, through @netstatus. The functions net-
synctime and netping are asynchronous: they return immediately (before
a reply from the remote host is received).

MP3 audio streams

The H0420 E-series can play MP3 audio that is streamed to the device.
There are four protocols for streaming: direct streaming via TFTP, direct
streaming via RTP, and buffered streaming with a progressive HTTP pro-
tocol (e.g. Shoutcast), and buffered streaming via standard HTTP. TFTP
streaming and HTTP streaming (progressive or standard) can be used con-
currently.

• Progressive HTTP versus standard HTTP

Progressive and standard HTTP streaming have are similar in that the script
uses functions play or netstream in both cases and that a stream queue
must be prepared in both cases.

There are also important differences. To begin with, the server set-up is
different: you need a HTTP server for standard HTTP streaming and a
Shoutcast/Icecast server for progressive HTTP. Standard HTTP streams

6 � MP3 audio streams

play MP3 files over the network, from start to finish —you do not have
the option start at an arbitrary position in the file. The “standard” HTTP
streaming is therefore not suitable for live streaming.

The main advantages of standard HTTP streaming are that HTTP servers
are more readily available (e.g. in “shared hosting” accounts) than streaming
audio servers, and that standard HTTP streaming allows the client (i.e. the
“web radio”) to choose the tracks to play; a progressive HTTP stream plays
back what the server pushes into the channel.

To use either kind of HTTP streaming, first the CompactFlash card must be
prepared. The card must contain a file called “stream.swp” of an appropriate
size and this file must be unfragmented. The H0415E/2 product comes with
a utility, PrepareStream, that creates a stream file of an appropriate size
that complies with the requirements for HTTP streaming. The utility can
be found on the CD-ROM that comes with the product.

When using progressive HTTP, a relatively small stream queue of 512 kiB is
sufficient. For standard HTTP streaming, a larger queue has the advantage
that the complete track is downloaded in “burst mode” when it fits in the
stream queue —the advantage is that quick downloads are less prone to
dropped or stalling connections. In general, if you can spare the space on
the CompactFlash card, a big stream queue is best.

• Streaming with progressive HTTP

The most common streaming method is a variation on the protocol used by
all web browsers (Mozilla Firefox, Internet Explorer, Opera, etc.): the HTTP
protocol. For MP3 streaming, ubiquitous stream servers are Shoutcast and
Icecast, both of which use the progressive HTTP protocol.

Progressive HTTP is more suitable for streaming over a WAN or the Inter-
net because it is buffered. This, in turn, requires that a suitable queue is
prepared on the CompactFlash card —see the preceding section. For pro-
gressive HTTP, a stream queue size of 512 kiB works well in most cases, but
larger stream queues never hurt. You can optionally also monitor the queue
status to decide when to start playing the stream.

Like standard HTTP, progressive HTTP is a “pull” protocol: the H0420
initiates the connection to a stream server.

You connect to a stream with the function netstream or function play.
Both functions start filling the stream queue and both start playing audio

MP3 audio streams � 7

from the stream queue when it reaches a certain level. Function netstream

allows you to specify how many kilobytes must be in the stream queue before
starting to play the stream (function play fixes this at 128 kiB). In addition,
netstream can buffer (or re-buffer) a stream while audio is still playing —
play will stop audio output before starting up the stream.

With netstream, you can select at which queue level you wish to start
playing the stream. When you wait until the stream queue is 256 kiB full,
you are relatively insensitive to network stalls (due to congestion or bad
reception), but there is a high “latency” between the connection to the
stream and the audio actually coming out of the speakers. This latency
is because the queue needs to be filled first. You can choose to reduce the
latency by starting to play the stream at a queue level of 32 kiB, at the risk
that a network stall causes a gap in the audio or a disconnection from the
stream.

The number of seconds in the stream queue depends on the amount of data
in the queue and the bit rate. At the common MP3 bit rate 128 kb/s, the
player processes 16,000 bytes per second.

A Shoutcast server will typically enter “burst mode” immediately after es-
tablishing a connection. In burst mode, the server sends up to 256 kiB as
quickly as possible, and then switches to stream mode where the transfer
speed is equivalent to the audio bit rate. Although newer Icecast servers
also use burst mode, an older Icecast server streams at the speed of the au-
dio bit rate from the very beginning. If you know that you are connecting
to an old Icecast server, you may wish to fill the queue to 256 kiB before
starting to play the stream. Similarly, for a Shoutcast server, you may start
to play at a queue fill level of 64 kiB, because the queue will grow quickly in
burst mode. If you do not know what server the device connects to, waiting
until a fill level of 128 kiB is a fair trade-off: it is a safe margin for an Icecast
server, and not cause a great delay for a Shoutcast server —it fills the queue
to this level quickly anyway, because of burst mode.

With function play, all that is required is that you pass in an URL to the
stream. The URL prefixes “http://” and “icy://” are equivalent, except
that the default port number for “http://” is 80 and that for “icy://” is
8000.

Listing: Streaming with HTTP

play !"icy://224.82.71.81:8080/"

8 � MP3 audio streams

The H0420 supports meta-data in the stream. This meta-data is textual
data, usually containing the title of the song and the name of the artist or
the band, that the streaming server inserts into the audio stream at regular
intervals. When a stream is playing, a script can retrieve that data from
the function taginfo. Although meta-data is not technically a “tag”, the
two concepts share the same purpose and most streaming servers retrieve
the meta-data from the tags of the tracks.

• Restarting a HTTP stream

The netstream function is more specialized than function play for stream-
ing: it has a parameter for the amount of data (in kiB) in the stream queue
before playing starts and it can start buffering a stream while audio is still
playing. The previous section already discussed the relation between the
queue fill level and audio latency. This section focusses on the second fea-
ture —which is particularly useful for reliable streaming from progressive
HTTP servers (Shoutcast/Icecast servers).

HTTP is a simple protocol on top of TCP. There are no particular reasons
why a TCP connection may not be kept open indefinitely, but the protocol
was not designed for continuous never-ending transfers. In practice, TCP
connections get dropped on occasion. This may happen, among other rea-
sons, because of server load or time-outs in NAT routers, a gateway in the
middle (a “hop”) that goes off-line, or a host switching to a different network
(this happens with mobile devices that are “on the road”).

When the H0420 is playing a stream and the connection for the stream gets
disrupted, the H0420 will continue to play the remainder of the audio in the
stream queue. No new data will arrive into the queue, however. The only
way to “fix” a broken connection is to set up a new connection and restart
the stream. The advantage that netstream has to play in this situation is
that netstream can continue to play the remainder of the stream while the
stream is restarted. In other words, netstream avoids (or at least minimizes)
a silent gap during the re-opening of the stream.

The following code snippet illustrates a the concept:

Listing: Monitoring and restarting a HTTP stream

const StreamUrl[] = !"icy://192.168.1.22"

const StreamBufferLimit = 128

MP3 audio streams � 9

@main()

{

netsetup

settimer 1000

}

@timer()

{

static StartDelay = 0

const LowBufferLimit = StreamBufferLimit / 4

if (netinfo(LinkStatus) != 0 && netinfo(GatewayIP) != 0)

{

if (StartDelay == 0 && netinfo(StreamQueue) < LowBufferLimit)

{

StartDelay = 10

netstream StreamUrl, StreamBufferLimit

}

}

if (StartDelay > 0)

StartDelay--

}

The script initializes a timer. The event function @timer checks whether
network is ready. The script assumes that a DHCP server is present, so that
it will have a gateway address once the DHCP handshake completes.∗ The
first time that it drops through the first “if” that checks the LinkStatus

and the GatewayIP, the fill level of the stream queue is zero bytes. It will
therefore drop through the second “if” as well and start the stream. It also
sets a local variable, StartDelay, because on the next timer event —one
second later, the stream has just started and the stream queue may not
have received the first 32 kiB of the stream data yet.† We should give the
stream a chance to fill the queue. Hence, the script makes sure that it does
not restart a stream within 10 seconds since the last start.

When the stream is playing, the queue fill level will normally stay relatively
stable, and that level will be either close to the queue limit set in function
netstream, or it may be higher if the streaming server uses a burst mode
to a higher fill level. If the stream queue fill level drops below 25% of the

∗
an alternative would be to implement the @netstatus function and wait for the NetAddrSet

event, see page 3.

†
Since StreamBufferLimit is defined at 128 kiB, StreamBufferLimit divided by 4 is 32 kiB.

10 � MP3 audio streams

level set in netstream, the connection probably has a problem. The script
detects this situation and restarts the stream.

If a reconnection succeeds, the H0420 picks up the stream from the server
again. If the reconnection was quick enough to avoid the stream queue to
empty completely, there will be no gap in the audio (i.e. no silent period).
However, due to the buffering scheme of progressive HTTP streaming, the
position in the track where the stream is picked up will not match precisely
the position where the connection was broken. As a result, there will be a
glitch in the audio shortly after the successful reconnection.

Restarting a stream is only useful when the server uses burst mode. If the
server does not use burst mode, the stream queue receives new data at the
bit rate of the audio, which means that the stream queue cannot grow and
play at the same time. Restarting a stream is also only useful for progressive
HTTP streaming: when restarting a standard HTTP stream, the stream
restarts from the beginning of the track, which is not what you want.

• Tips for progressive HTTP streaming

⋄ To keep playing a local track while the stream queue fills up, use net-

stream instead of function play.

⋄ To detect a disconnection from the stream, implement the event function
@audiostatus and watch for the “Stopped” signal. If this signal arrives
and you were streaming, the stream was disconnected.

⋄ While playing a stream, you can also monitor the fill level of the stream
queue with function netinfo and call netstream on the same stream again
when it drops below a certain level. Doing this refreshes the stream.

⋄ To signal a failed connection to a stream:

a) check the return value of netstream; it returns false if it cannot
connect to the server;

b) @netstatus gets the event NetStreamBuffer with status 0 (stream
queue 0% full), which means that the remote stream server replied
with an error or reset the connection.

⋄ To monitor the level to which the stream queue is full, call netinfo with
code StreamQueue.

MP3 audio streams � 11

⋄ To abort a stream, call netstream(""). This stops the stream. The audio
will continue playing for a few seconds, because there is likely still data
in the stream queue. You can wait until it runs out, or call the function
stop.

• Streaming via TFTP

The simplest way to “stream” an MP3 file to the H0420 is to transfer it to
the H0420 with the TFTP protocol and the destination filename "stream:"
Note that the trailing colon in the name is required. For streaming over
TFTP, all that is required is a TFTP client that allows you to set a specific
target filename.

TFTP streaming is practical to send announcements by the network to play-
ers that normally play tracks from a CompactFlash card or use progressive
HTTP streaming. Since the TFTP streaming method is non-buffered, it is
not suitable for networks with a high latency, such as a WAN or the Internet.

TFTP streaming, as implemented in the H0420, is a “push” protocol, which
means that the remote host initiates the streaming connection. In other
words, you tell the H0420 what file to stream in (by starting a TFTP session);
the H0420 does not ask for the stream.

In contrast to progressive HTTP streaming, audio data that is streamed
over TFTP does not pass through the CompactFlash card. The TFTP
server implemented in the H0420 uses the lock-step mechanism in the TFTP
protocol to accept the audio data in when needed.

• Streaming with RTP

The “Real-time Transport Protocol” (RTP) is designed for quick transfer of
multimedia data, where transfer speed is more important than integrity of
the data. Occasionally, a packet with audio information may get lost with
RTP. On the other hand, latency is much lower than in reliable transport
protocols such as HTTP and the protocol overhead is lower too —which
also reflects in lower bandwidth requirements. RTP is furthermore a suit-
able protocol for multicasting, which may significantly reduce bandwidth
requirements.

There are various devices that can stream audio data onto the network using
RTP. A PC application (on Microsoft Windows) that creates an RTP stream
from MP3 tracks is “LiveCaster”.

12 � Transferring files

RTP is a non-buffered “push” protocol. No “stream queue” needs to be
prepared on the CompactFlash card, and no stream needs to be initialized.
To play an RTP stream, the script only needs to call the standard function
play with an RTP URL instead of a filename. For example, the following
snippet starts playing the stream from the server at “224.82.71.81” on port
56952:

Listing: Streaming with RTP

play !"rtp://224.82.71.81:56952/"

No standard port is defined for the RTP protocol, which is why you usually
have to give an explicit port number. If you omit the port, the H0420 MP3
controller uses port 5004 for RTP packets.

The controller automatically detects multicast addresses and sends out a
multicast group announcement for the service if needed. If the remote ad-
dress is an unicast address, no group announcement is sent.

The H0420 MP3 controller is compatible with the Barix extension of the
RTP protocol, where the host has to request the stream from the server
first. The Barix RTP variant is often better able to get audio data through
a NAT router than the standard RTP protocol, but it may be limited to
unicast applications. To use the Barix RTP variant, specify the protocol
prefix “brtp://” in the play command (instead of “rtp://”).

Transferring files

The script supports the HTTP protocol for downloading files from a web
server and the TFTP protocol for downloading and uploading files from and
to a TFTP server. Authenticated file transfers are currently not supported.

To initiate the file transfers, the script uses the functions netdownload and
netupload. These functions are asynchronous, meaning that the function
returns before the file transfer is complete. Once the transfer completes, the
script receives an event through the @netstatus function —the respective
event codes are NetHttpDone and NetTftpDone.

These functions initiate the file transfer and thereby act as a “client”. The
script can also wait for an incoming request (from a remote host) to transfer
a file, by setting up a server. See the section “HTTP, FTP and TFTP
servers” on page 16 for this functionality.

Monitoring and configuration with SNMP � 13

Monitoring and configuration with SNMP

SNMP stands for “Simple Network Management Protocol”. This protocol
allows remote monitoring and configuration of network devices. For this
to work, the network device must be equipped with an SNMP agent. To
implement an SNMP (version 1) agent in the H0420, you need a script that
contains the @netsnmp function and a MIB file.

With SNMP, a monitor sends out queries at regular intervals to request
the status of one or more parameters of one or more devices. The A query
may also contain a new value for a parameter. Each device contains an
SNMP agent that receives the queries and responds to it. This is the task
of the @netsnmp function: return and optionally change values of requested
parameters.

SNMP works with “communities”, where the name of a community functions
as a password. The SNMP browser sets the community name and the SNMP
agent decides whether that community name is given read or write access
—or neither. See function @netsnmpcfg to set community strings for the
SNMP agent in the H0420.

For reasons of efficiency, SNMP exchanges all device parameters as numbers.
So 1 may stand for “device status” and 12 for “current volume setting”.
An SNMP browser or SNMP monitor that you use on your workstation to
control the device shows the same parameters with their names. To map
“magic” numbers to human-readable names (and vice versa), the SNMP
browser/monitor needs a MIB file.

The MIB (“Management Information Base”) file is a plain text file that
contains the definitions of the settings that the H0420 MP3 controller can
return. These settings depend on the script. You can build a script that
allows a user to select tracks, set volume and balance and other audio pa-
rameters, or build a script that allows a user to query information such as
up-time, network traffic and recent status changes. The script, and in partic-
ular the event function @netsnmp, determine how the H0420 MP3 controller
responds to queries and which requests it supports.

Obviously, the definitions in the MIB file must be in conformance with the
implementation of the @netsnmp function in the script. Part of the MIB
file needed for the H0420 is fixed, but another part is flexible because the
scripting capabilities of the H0420 are flexible too.

14 � Monitoring and configuration with SNMP

• The MIB file

The template MIB file, onto which you will base your specific MIB files is
below. You will find this template MIB file on the CD-ROM that comes
with the product (in the “examples” subdirectory).

Listing: Template MIB file

--

-- A template SNMP MIB file for use with the H0420

--

-- Copyright (c) 2007-2008 ITB CompuPhase

--

-- ==

-- This part should remain unchanged

-- ==

COMPUPHASE-MIB DEFINITIONS ::= BEGIN

IMPORTS

enterprises, IpAddress, Counter, TimeTicks

FROM RFC1155-SMI

OBJECT-TYPE

FROM RFC-1212

DisplayString

FROM RFC-1213;

compuphase OBJECT IDENTIFIER ::= { enterprises 28388 }

products OBJECT IDENTIFIER ::= { compuphase 1 }

h0420 OBJECT IDENTIFIER ::= { products 20 }

-- ==

-- The part below is specific to the application, and it must be

-- in conformance with the script

-- ==

-- Add your definitions here...

-- ==

-- End of the application-specific definitions

-- ==

END

The definitions in the MIB file are written in “Abstract Syntax Notation
One”, or ASN.1. Information on the ASN.1 syntax can be found in various
books and on the Internet, including tutorials and the original definitions in
RFCs.

When writing the MIB file, please note that the H0420 implementation of
the SNMP agent only supports whole numbers and (octet/character) strings.
The H0420 does not support “sequence” types for user data. In the MIB file,

Monitoring and configuration with SNMP � 15

you may also use derived types as Counter, Gauge, TimeTick and IpAddress,
which are basically different representations of integer values.

Below is a very brief implementation of the @netsnmp function. It handles
only two fields: the title of the track currently playing (this is a read-only)
property and the volume level —a read-write property.

Listing: Minimal SNMP agent

@netsnmp(item, data[], size)

{

switch (item)

{

case 1: // title, read-only

taginfo ID3_Title, data, size

case 3:

if (size == 0)

setvolume strval(data)

else

{

new value

getvolume value

strformat data, size, true, !"%d", value

}

default:

return false

}

return true

}

The definitions to put in the MIB file are below (these definitions must be
merged in the template MIB file, see page 14):

Listing: MIB file extract, matching the above minimal SNMP agent

Title OBJECT-TYPE

SYNTAX OCTET STRING

ACCESS read-only

STATUS mandatory

DESCRIPTION "Track title"

::= { h0420 1 }

Volume OBJECT-TYPE

SYNTAX INTEGER(0..100)

ACCESS read-write

STATUS mandatory

DESCRIPTION "Audio volume (0..100)"

::= { h0420 3 }

16 � HTTP, FTP and TFTP servers

HTTP, FTP and TFTP servers

To enable the built-in HTTP, FTP and/or TFTP servers, the script must
implement the @nettransfer function. The HTTP, FTP and TFTP pro-
tocols are file transfer protocols. The FTP and TFTP servers allow read
and write requests, while the HTTP server only supports read requests (i.e.
“downloads” or page views). Only the FTP server requires a log-in before
allowing file transfers. The script may optionally also implement the @net-

status function to receive an event on the completion of the transfer.

To have the script initiate the file transfer itself, rather than wait for an
incoming request, see section “Transferring files” on page 12.

The purpose of the @nettransfer function is to let the script either allow
or refuse the request. In the case of a HTTP server, the script may also
process any parameters on the URL (before acknowledging or cancelling the
transfer).

• TFTP server

The following implementation of @nettransfer enables the TFTP server,
but cancels any HTTP requests that it receives. Read and write requests
are accepted in the “user” subdirectory, and cancelled for other areas on the
memory card of the H0420.

Listing: Handling TFTP requests

bool: @nettransfer(path[], NetRequest:code, socket)

{

/* HTTP requests are denied (only accept HTTP requests) */

if (code != NetTftpGet && code != NetTftpPut)

return false

/* only up/downloading to/from "user" is allowed */

if (strcmp(path, !"user/", true, 5) != 0)

return false

return true /* allow this transfer */

}

TFTP has no concept of a “current directory”. Instead, the full path of the
filename to “put” or to “get” must be specified. Some TFTP clients allow
you to type in only a single name, for both the source and the destination.
This is inconvenient if you wish to transfer a file to or from a different
directory on the PC than on the memory card of the H0420. A free TFTP
client that allows separate paths and names for the local and remote hosts
is tftpd32 by Philippe Jounin.

HTTP, FTP and TFTP servers � 17

• HTTP server

From the viewpoint of the pawn script is a web server very similar to a TFTP
server. For a HTTP server, you also need to implement the @nettransfer

function, but now enabling the HTTP requests instead of (or in addition to)
the TFTP requests.

HTTP clients, such as a browser like Mozilla Firefox or Microsoft Inter-
net Explorer, may pass parameters to a server accompanying the request.
The H0420 supports URL parameters on “get” requests and passes the full
URL to the @nettransfer function. In @nettransfer, you can process and
save these parameters. The browser may then obtain the processed results
with a subsequent file transfer or through an embedded request using the
XMLHttpRequest method supported by most browsers.

Listing: Handling HTTP requests

bool: @nettransfer(path[], NetRequest:code, socket)

{

if (code != NetHttpGet)

return false /* deny non-HTTP transfers */

/* get and save any parameters */

new idx = strfind(path, !"?");

if (idx >= 0)

{

new params[100 char]

strmid params, path, idx + 1

/* write the parameter in a file (without further processing) */

new File: handle = fopen(!"params.txt", io_write)

if (handle)

{

fwrite handle, params

fclose handle

}

}

return true /* allow this transfer */

}

The script presented above saves any parameters into a text file, without
processing the parameters in any way. If you do not plan to handle URL
parameters, you can remove the entire section —making the @nettransfer

as simple as:

Listing: Handling HTTP requests ignoring any URL parameters

bool: @nettransfer(path[], NetRequest:code, socket)

return (code == NetHttpGet) /* allow HTTP, deny TFTP */

18 � HTTP, FTP and TFTP servers

• FTP server

Like the HTTP and TFTP servers, the FTP server passes through the @net-
transfer function. In the implementation of this function in the pawn

script, it must respond to several FTP requests. The FTP protocol has a
login handshake, and it allows you to set one or more usernames and pass-
words for all users that you wish to grant access. Only one user can be
connected to the FTP server at a time.

After login, the @nettransfer function may also allow or block any file
transfer command (upload or download) as well as file deletion. In addition,
the FTP server supports the site command, which you can use to send
arbitrary commands to the script from within an FTP client (not all FTP
clients support the site command).

Listing: Handling FTP requests

bool: @nettransfer(path[], NetRequest:code, socket)

{

switch (code)

{

case NetFtpLogin:

{

/* read the username:password string from an INI file */

new ftplogin[30 char]

readcfg .key=!"ftplogin", .value=ftplogin, .pack=true

/* accept a matching login, or accept all login’s if

* no username:password was set in the INI file

*/

return strlen(ftplogin) == 0 || strcmp(path,ftplogin) == 0

}

case NetFtpGet, NetFtpDelete, NetFtpPut:

return true /* accept all file commands */

case NetFtpCmd:

if (strcmp(path, !"RESET") == 0)

{

reset /* host command = "SITE RESET" */

return true

}

}

return false /* deny all non-FTP transfers */

}

19

Function reference

Public functions

@netreceive A data packet is received

Syntax: @netreceive(const buffer[], size, const source[])

buffer The data received. Depending on the protocol,
this may be text or numeric data. See the notes,
below, for details.

size The size of the data in buffer, in cells. Each
cell holds four bytes or four characters. This
parameter may be zero on a “passive connect”,
see the notes, below.

source For UDP connections, this field is the IP ad-
dress and the port number of the sender, where
the IP address and the port are separated by
a colon (for example: “192.168.10.29:9930”).
For TCP connections, this field is a “#” followed
by the socket number returned by netlisten.

Returns: The return value of this function is currently ignored.

Notes: If the received data is ascii text, parameter buffer holds
a packed string that may not be zero-terminated. Use the
size parameter to determine the number of cells of data in
the buffer. If the received data is not text, it is assumed to
consist of 32-bit values that are send in “network byte order”
(Big Endian).

Before being able to receive packets, the script should call net-
connect to open a connection, or call netlisten to allow a
remote host to connect.

When the script is listening on a TCP socket and a remote
device connects to this socket (i.e., a passive connect), the
@netreceive function is called with the size parameter set

20 � @netsnmp

to zero. A script can use this special case to send a greeting
message to the remote host on connect.

Example: See the Telnet server (skeleton) on page 3.

See also: netlisten

@netsnmp An SNMP request is received

Syntax: bool: @netsnmp(item, data[], size)

item The numeric identifier of the item.

data Either the new data to write to the item (SET
request), or the buffer to read the current value
of the item into (GET request).

size If zero, this is a SET request and data is a zero-
terminated string that holds the new data for
the item. If non-zero, this is a GET request and
this parameter holds the size of the data array
in cells.

Returns: The function should return true if it can fulfil the request and
false on failure. In particular, if item has an unknown or
unsupported value, this function should return false.

Notes: The same function is used for querying parameters and for
setting them. The distinction between the two operations is
in the size parameter. If it is zero, the request is a SET
operation; otherwise it is a GET operation.

The contents of parameter data may be a text string, a num-
ber or an IP address, depending on the definition of the item.
For SET requests, numbers and IP addresses are encoded as
text strings. For GET requests, the script should store the
requested information in parameter data as a text string.

The definition of the type of each item is in the MIB file. It is
the responsibility of the programmer to have a matching MIB
file to the implementation of this @netsnmp function.

Example: See the code and associated MIB snippets on page 15.

See also: netsnmptrap

@netstatus � 21

@netstatus Network status changed/event occurred

Syntax: @netstatus(NetStatus: code, status)

code The code of the event or status change; it is one
of the following:

NetLink (0)
Physical link status; parameter status
= 0 (disconnected) or 1 (connected).

NetPing (1)
Ping reply (see netping); parameter
status = ping sequence number.

NetAddrSet (2)
The IP address is set; this code is use-
ful for DHCP configuration because is
signals that the network is ready for
sending and receiving packets; param-
eter status holds the IP address as a
32-bit integer value.

NetTimeSync (3)
H0420 clock synchronized with remote
host (this time is in UTC, you may need
to adjust the clock for the time zone or
daylight saving time); parameter sta-

tus = 0.

NetLeaseExp (4)
The DHCP lease is expired or the link-
local lease is expired; parameter status
= 0.

NetTftpDone (5)
TFTP transfer has finished; parameter
status = 0.

NetHttpDone (6)
HTTP transfer has finished; parameter
status = 0.

NetStreamQueue (7)
Stream queue mark reached; parameter
status = level (in kilobytes), it is zero

22 � @nettransfer

if the remote server rejected the stream
request.

NetFtpDone (8)
FTP transfer has finished; parameter
status = 0.

status The value associated with the status, its meaning
depends on the event code.

Returns: The return value of this function is currently ignored.

Notes: Link-local addresses have a fixed lease of 10 minutes. DHCP
leases depend on the configuration of the DHCP server.

Example: See the Telnet server (skeleton) on page 3.

See also: netclose, netinfo, netping, netsetup, netstream, net-
synctime

@nettransfer A file transfer request was received

Syntax: bool: @nettransfer(path[], code)

path The full path to the requested file, for HTTP this
may include any parameters. The script may
modify this parameter, which is useful for redi-
recting a file, for example.

code The code of the event or status change; it is one
of the following:
NetTftpGet (1)

The remote host requests to receive this
file from the H0420, using the TFTP
protocol.

NetTftpPut (2)
The remote host requests to transmit
this file to the H0420, using the TFTP
protocol.

NetHttpGet (3)
The remote host requests to receive this
file from the H0420, using the HTTP
protocol.

@nettransfer � 23

NetFtpLogin (5)
The remote host requests to log in as
an FTP user. The path parameter con-
tains the username and password, sep-
arated with a colon (“user:password”).

NetFtpGet (6)
The remote host requests to receive this
file from the H0420, using the FTP pro-
tocol.

NetFtpPut (7)
The remote host requests to transmit
this file to the H0420, using the FTP
protocol.

NetFtpDel (8)
The remote host requests to delete this
file from the H0420 server (using the
FTP protocol).

NetFtpCmd (9)
The remote host has sent a site com-
mand. The path parameter contains
the text of the site command, exclud-
ing the keyword site.

Returns: The function should return true if it can fulfil the request and
false on failure.

Notes: On a GET request, if the file cannot be found, the TFTP,
HTTP or FTP server in the H0420 will always return an ap-
propriate error code. It is not necessary to verify the presence
of the files.

Any parameters on the URL, for a HTTP request, may be
used by the script to adjust settings. Web forms often use
parameters on the URL to pass data from the client to the
server.

If you do not implement this function, all TFTP, HTTP and
FTP server requests are denied. The FTP server can only han-
dle one user at a time. A login request while there is already
a connection open is denied. Some modern FTP clients issue

24 � Native functions

a second (or third. . .) login for every file transfer; this option
must be disabled for the FTP server in the H0420.

Example: See the code snippets on page 16 and page 17.

See also: netdownload, netupload

Native functions

netclose Close a socket

Syntax: bool: netclose(socket)

socket The socket number to close. This value must
have been returned by an earlier call to a func-
tion that opens a socket (see netconnect and
netlisten).

Returns: true on success and false on failure.

Notes: When closing a “listening” connection, the ability for remote
hosts to connect is disabled. To close the active connection
with a remote host, but remain available to new connections,
call netlisten after the call to netclose.

See also: netconnect, netlisten

netconnect Open a connection / socket

Syntax: netconnect(const remote addr[])

remote addr The IP address and (optionally) the port num-
ber to connect to. An example of a full address
is “193.54.119.12:23”, where the host is at IP
address 193.54.119.12 and the service is at port
number 23. If the port number is absent, the
function connects to the default port 9930. In-
stead of an IP address, you may also give a do-
main name, as in “server.mydomain.com:2”.

netdownload � 25

Returns: The function returns a socket number of the open is successful,
or zero on failure.

Notes: This function opens a socket and sets up a transfer to a re-
mote host. That is, it sets up an outgoing connection. See
netlisten to handle incoming connections.

See also: netclose, netsend

netdownload Download a file

Syntax: netdownload(const url[], const filename[]=!"")

url The full network path of the file to download,
preferably including the protocol prefix. For ex-
ample, to download the file “loops.mp3” from
www.soundclips.com, the URL would be:
“http://www.soundclips.com/loops.mp3”.

filename The local filename to store the downloaded file
in. This name may optionally include a direc-
tory.

Returns: The function returns 0 on error (unable to connect to the host,
or file not found) and a socket number on success.

Notes: To download from a HTTP server, use the protocol designator
“http://”. To download a file from a TFTP server, the proto-
col designator is “tftp://”. TFTP transfers are usually faster
than HTTP transfers, especially on local networks (LAN).

The function returns before the download is complete. When
the download completes, you will receive the event @netstatus
with code NetHttpDone or NetTftpDone. You can abort a
transfer by calling netclose on the returned socket number.

See also: @netstatus, netclose, netupload

26 � netinfo

netinfo Get network status information

Syntax: netinfo(NetInfo: code,

string[]=!"", size=sizeof string)

code The kind of data to return, it must be one of the
following:

LinkStatus (0)
The status of the physical link: 0 if the
device has no good (physical) connec-
tion to a network (LAN or WAN), and
1 if the physical link is present. A bad
physical link usually indicates that the
device is disconnected or that the cable
is defective.

IPaddress (1)
The IP address of this host.

SubnetMask (2)
The subnet mask matching the IP ad-
dress.

GatewayIP (3)
The address of the gateway.

DNS IP (4)
The address of the domain name server.

MACaddr (5)
The hardware (MAC) address; this in-
formation is only returned as a string.

HostName (6)
The name of the H0420 device as known
on the network; this item is only re-
turned as a string.

StreamQueue (7)
The level to which the stream queue
is filled, in the context of progressive
HTTP streaming. This value is in kilo-
bytes, so when the return value is 98,
there is 98 kiB left in the queue at the
time of the call.

netlisten � 27

In case that you need to know the max-
imum size of the stream queue, use fs-
tat on the file “stream.swp”.

PacketLoss (8)
The number of RTP packets lost since
the last request; in the context of RTP
streaming. This “lost packets” count is
reset to zero after this call.

LeaseTime (9)
The time that is left before the lease
expires (in seconds).

string If provided (and of suitable length), the item is
stored in a formatted way in this string.

size The size of the string parameter, in cells. Since
the function will store the data in parameter
string as a packed string, four characters fit into
a single cell.

Returns: The requested value, or zero on error.

Notes: The function returns the data as a number (except for the
codes MACaddr and HostName). If a string of suitable length
is provided, the function also stores the value as a formatted
number. IP addresses are stored in the string parameter as
dotted numbers (for example: “192.168.1.16”).

See also: @netstatus, netsetup, netstream

netlisten Open a “listening” connection

Syntax: netlisten(port=9930, NetProtocol: protocol=UDP)

port The number of the port to listen to. The default
port is 9930.

protocol Must be either TCP or UDP.

Returns: The socket number, or zero on error.

28 � netping

Notes: A “listening connection” is needed to accept incoming connec-
tions. For outgoing connections, see netconnect. Both incom-
ing and outgoing connections need the @netreceive function
to handle received data. When a remote host connects to a
listening socket, this is also called a “passive connect”.

By default, a listening connection is already set up on the UDP
port 9930. In order to listen to a different port, or to listen on
a TCP connection, you need to call netlisten explicitly.

The function returns a socket number that was opened for the
listener. To stop listening on the port, close this socket number
with netclose. After closing a listening socket, an external
host can no longer connect to the MP3 controller (and send it
data). In order to close a connection and return to a listening
state, first call netclose and then call netlisten again to set
up a new listener.

Example: See the Telnet server (skeleton) on page 3.

See also: @netreceive, netclose, netconnect

netping “Ping” remote host

Syntax: bool: netping(const remote addr[], sequence=0)

remote addr The IP address or the domain name of the re-
mote host to send a ping request to. No port
number may be attached to the IP address or
domain name.

sequence An arbitrary number that allows you to match
the ping response to a request, in case you send
multiple “pings”.

Returns: true if the “ping” message could be sent, false if sending the
message failed.

netping � 29

Notes: The first step in diagnosing a network problem often is to send
a “ping” message. If the message can be sent and a reply is
received within (at most) a few seconds, the core protocols of
the TCP/IP protocol suite are working and the remote host is
up.

If a call to netping fails, this indicates one of the following:

⋄ Physical connection down: no cable is connected to the
device, the cable is damaged, the network switch or hub is
down, . . .

⋄ No gateway: the IP address in remote_addr lies in a differ-
ent network than this host and the gateway is misconfigured
or non-responding. This situation may also occur when this
host has obtained a link-local address and it is trying to
reach computers outside the link-local address range.

⋄ ARP failure: the IP address in remote_addr is in the same
network as this host, but the remote host does not respond
to address look-up queries (ARP). This usually means that
the remote host is down.

⋄ DNS/NetBIOS failure: if you passed in a domain name
in parameter remote_addr (instead of an IP address), this
name could not be resolved to an IP address using DNS
and/or NetBIOS queries.

Even if the “ping” message was transmitted successfully, func-
tion netping returns immediately after sending the ping re-
quest; it does not wait for a reply. If the remote host responds
to the ping request, the returned answer will fire the event
@netstatus with code NetPing and the status parameter set
to the sequence number of the corresponding call to netping.

See also: @netstatus, netinfo

30 � netsend

netsend Send a packet

Syntax: bool: netsend(const buffer[], size=sizeof buffer,

const remote addr[])

buffer The data to send to a remote host.

size The size of the buffer in cells.

remote addr Either an IP address and a port, for sending an
UDP datagram, or a socket number for sending
a TCP message —see the notes for details.

Returns: true on success and false on failure.

Notes: When sending an UDP message, the remote address should
have the form like “193.54.119.12:23”, where the host is at IP
address “193.54.119.12” and the service is at port number 23.
You may give a domain name, like “server.mydomain.com:23”,
instead of an IP address. If the port number is absent, the
function connects to the default port 9930.

For sending a TCP message, the remote_addr parameter must
contain only a socket number, optionally prefixed with a “#”.
For example, when sending on socket 3, remote_addr could
have the value “#3”. See netsocket to convert socket numbers
to a string with a “#” prefix.

TCP connections must be set up before any data can be sent,
see function netconnect.

The netsend function sends numeric data in parameter buffer
as 32-bit values in “network byte order” (Big Endian). When
sending text data, the text is padded to a multiple of four bytes
(the size of a pawn cell).

Example: See the Telnet server (skeleton) on page 3.

See also: @netreceive, netconnect, netsocket

netsetup � 31

netsetup Initialize the network

Syntax: bool: netsetup(const ip address[]=!"",

const gateway address[]=!"",

const dns address[]=!"",

const subnet mask[]=!"",

const hostname[]=!"")

ip address The IP address of this host (the MP3 controller),
or empty to have it looked up from a DHCP
server.

gateway address

The IP address of the gateway, or empty to have
it looked up from a DHCP server.

dns address The IP address of the DNS server, or empty to
have it looked up from a DHCP server.

subnet mask The network mask in “dotted format” (see be-
low), or empty to have it looked up from a DHCP
server.

hostname The name of this host. This name is used for the
DHCP request and for the DNS and NetBIOS
look-ups. If left empty, the standard name is
“H0420”.

Returns: true on success and false on failure.

Notes: All IP addresses should be in “dotted format”, meaning four
decimal numbers in the range of 0 to 255 separated by periods.
An example is 192.168.10.29.

You should avoid doing partial DHCP look-ups —either leave
the first three parameters of this function empty, in order to
have them provided by a DHCP server, or specify all three:
the host IP address, the gateway address and the DNS server
address. For common networks, the function can establish the
network mask automatically, but if known, it is best to specify
it as well.

If no IP addresses are given, and DHCP fails too, the H0420
assigns a “link-local” address to itself. Link-local addresses

32 � netshutdown

are only valid inside a LAN (the link-local address range is
non-routable). The H0420 will not have access to the Internet
when it has a link-local address. The link-local address scheme
is also known as “AutoIP” and “APIPA”.

Example: See the code snippets on page 2 and page 8.

See also: netshutdown

netshutdown Close the network interface

Syntax: netshutdown()

Returns: This function currently always returns 0.

Notes: This function closes down the network support and frees all
resources.

See also: netsetup

netsnmpcfg Set the communities (passwords) for SNMP

Syntax: netsnmpcfg(const readonly community[],

const readwrite community[])

readonly community

The password that allows reading (but not mod-
ifying) device values. The default string for this
community is “public”.

readwrite community

The password that allows modifying device val-
ues. The default string for this community is
“private”.

Returns: This function currently always returns 0.

Notes: See the section on SNMP on page 13 for more information on
SNMP authentication and access rules.

See also: @netsnmp, netsnmptrap

netsnmptrap � 33

netsnmptrap Send an SNMP trap

Syntax: bool: netsnmptrap(const remote addr[], trap,

item=0, const value[]=!"")

remote addr The IP address or the domain name of the host
to send the trap to.

trap The code for the trap. Predefined (standardized)
trap numbers are:

ColdStart (0)
Device power-up.

WarmStart (1)
Device reset.

LinkDown (2)
Network link is down.

LinkUp (3)
Network link is up.

AuthenticationFailed (4)
Authentication failed.

EGPNeighborLoss (5)
Neighbour in the Exterior Gateway
Protocol was lost.

See the SNMP standard for details on the stan-
dard traps.

Instead of a predefined trap number, you can
also send a device-specific trap (this is called
an “enterprise-specific” trap in the SNMP docu-
mentation.

item Parameter to which the trap relates (see the MIB
file).

value New value of the item parameter, which caused
the trap.

Returns: true on success, false on failure (trap could not be sent).

34 � netsocket

Notes: The MIB file must define all “enterprise-specific” traps with
trap numbers 6 and higher. The SNMP implementation of the
H0420 does not support enterprise-specific traps with numbers
0 to 5, because these are reserved for the standard traps (see
parameter trap).

See also: @netsnmp, netsyslog

netsocket Make a socket string from a socket number

Syntax: netsocket(value)

value The socket number.

Returns: A string containing the character “#” followed by the text rep-
resentation of the parameter value. For example, if parameter
value is 5, this function returns the string "#5".

See also: netsend

netstream Start buffering an audio stream

Syntax: netstream(const url[], buffermark=128,

bool: autoplay=true)

url The full network path of the file to download,
preferably including the protocol prefix. The
protocol prefix is “icy://” for Shoutcast and
Icecast servers that are on the default port 8000.
If the server uses port 80 instead, you may use
the protocol prefix “http://”, or add a port
number explicitly.

buffermark The criterion for the fill level of the stream queue
before starting playing the stream, in kilobytes.
This must be at least 8. The stream queue file (a
non-fragmented file called “stream.swp”) must
be at least 64 kiB larger than this buffermark

value. See page 6 for details on the stream queue.

netsynctime � 35

autoplay If true, the stream starts to play (output audio)
as soon as the level in parameter buffermark is
reached. When set to false, the public func-
tion @netstatus is still called with code Net-

StreamQueue, but no audio is output.

Returns: The socket number opened for the stream, or 0 on failure.

Notes: Many Shoutcast and Icecast servers publish only an URL to
a playlist, which then in turn contains the URL to the audio
stream. This function needs the latter: the URL to the audio
stream. If you wish to use the playlist approach, your script
can download it via netdownload and then parse through it
with the file functions (the playlist is a standard text file).

When the stream queue reaches the indicated level, the event
function @netstatus receives the NetStreamQueue event. By
default, the stream also starts playing automatically (possi-
bly interrupting a track that may be playing at the time).
However, if parameter autoplay is set to false, the script
must explicitly call function play with parameter "stream:"

to start playing the stream.

To close a stream, call netstream with the url parameter set
to an empty string.

Example: See the code snippet on page 8.

See also: @netstatus, play

netsynctime Request network time synchronization

Syntax: bool: netsynctime(const remote addr[])

remote addr The IP address or the domain name of the re-
mote host to send the network time request to.
No port number may be attached to the IP ad-
dress or domain name.

Returns: true if the request for the network time could be sent, false
if sending the request failed.

36 � netsyslog

Notes: The function returns immediately after sending the request; it
does not wait for a reply. If the remote host responds to the
network time request, the returned answer will fire the event
@netstatus with code NetTimeSync. The internal clock of the
MP3 controller will also be set to the time that the remote host
returns.

This function uses the protocol SNTP to synchronize the clock.
This protocol returns the time in UTC (the current name for
“Greenwich Mean Time”). To obtain the accurate local time,
you need to intercept the NetTimeSync event (function @net-

status) and add the time zone offset to the time. With this
procedure, you can also adjust for daylight saving time.

See also: @netstatus

netsyslog Send a system log message

Syntax: bool: netsyslog(const remote addr[], const mes-

sage[], severity=0)

remote addr The IP address or the domain name of the re-
mote host to send the log message to. No port
number may be attached to the IP address or
domain name.

message The message to send to the Syslog server.

severity By convention, a value between 0 and 7, with the
following meanings:
0 = emergency (system is unusable)

1 = alert (immediate action required)
2 = critical

3 = error

4 = warning
5 = notice (normal, but significant condition)

6 = informational
7 = debug

Returns: true on success, false if sending the message failed.

netupload � 37

Notes: Syslog is an industry standard protocol used for capturing log
information for devices on a network, usually via UDP Port
514. Syslog support is included in Unix and Linux based sys-
tems, but is not included in Microsoft Windows and MacOS.
However, there are third-party applications available to add
this capability to your system.

The function uses “local0” as the facility code in the Syslog
message.

See also: netsnmptrap

netupload Download a file

Syntax: netupload(const url[], const filename[]=!"")

url The full network path where the file will be up-
loaded, preferably including the protocol prefix.
To upload a file, with the name “loops.mp3”, on
the remote host at address 195.200.2.66, and us-
ing TFTP, the URL would be:
“tftp://195.200.2.66/loops.mp3”.

filename The path to the local filename upload file in.

Returns: The function returns 0 on error (unable to connect to the host,
or file not found) and a socket number on success.

Notes: In the current version of the firmware, only TFTP is available
as a protocol for upload data to an external server. However,
for compatibility with future revisions, it is best to specify the
protocol designator “tftp://” for all uploads.

The function returns before the upload is complete. When the
upload completes, you will receive the event @netstatus with
code NetHttpDone or NetTftpDone. You can abort a transfer
by calling netclose on the returned socket number.

See also: @netstatus, netclose, netdownload

38 � netupload

39

Index

⋄ Names of persons (not products) are in italics.
⋄ Function names, constants and compiler reserved words are in typewriter

font.

! @netreceive, 4, 19
@netsnmp, 13, 15, 20
@netstatus, 4, 21
@nettransfer, 16, 22

A APIPA, See Link-local address
ARP, 29
ASN.1 notation, 14
AutoIP, 1, see also Link-local

address

B Barix, 12
Big Endian, See Network Byte

Order
Bit rate, 7
Burst mode, 7, 9, 10

C Connection
incoming ~, 28
outgoing ~, 25

D DHCP, 1, 2, 4, 31

~ lease, 22
Diagnostics, 29, 33, 36
DNS, 29

F File transfer, 12, 16, 25, 37
FTP

~ server, 18, 23

H HTTP

~ server, 12, 17, 22

~ streaming, 5, 6, 26, 34

I Icecast, 5, 6, 8
Incoming connection, 28

J Jounin, Philippe, 16

L Latency, 7
Lease, 21, 27, see also DHCP lease
Link-local address, 31

~ lease, 22
LiveCaster, 11

M MAC address, 26
Meta-data, 8
MIB file, 13, 20
Microsoft Windows, 11, 37
Multicast, 11, 12

N NetBIOS, 29
netclose, 24
netconnect, 24
netdownload, 25
netinfo, 26
netlisten, 4, 27
netping, 28
netsend, 30
netsetup, 31

40 � Index

netshutdown, 32
netsnmpcfg, 32
netsnmptrap, 33
netsocket, 34
netstream, 34
netsynctime, 35
netsyslog, 36
netupload, 37
Network

~ Byte Order, 19, 30

~ diagnostics, 29, 33, 36

~ status, 26

~ time, 21

O Outgoing connection, 25

P Packed string, 19
Passive connect, 19, 28, see also

Incoming connection
Physical link, 21
Ping message, 28, 29
PrepareStream, 6

R RTP

~ streaming, 11, 27

S Server
FTP ~, 23
HTTP ~, 22
TFTP ~, 22

Shoutcast, 5, 6, 8
SNMP, 13, 20

community, 32
trap, 33

SNTP, 36
Socket, 24
socket, 24
Status

network ~, 26
Stream

~ queue, 7–9
Streaming, 5

~ glitch, 10
HTTP ~, 5, 6, 10, 26, 34
pull ~, 6
push ~, 11

~ queue, 6, 26
refresh ~, 10
restart ~, 8
RTP ~, 11, 27
TFTP ~, 11

Syslog, 37

T taginfo, 8
Telnet, 3, 4
TFTP

~ server, 12, 16, 22

~ streaming, 11
TFTPD32, 16
Time (network), 21

U Unicast, 12
URL, 16

~ parameters, 17, 23
UTC, 21, 36

W Web server, See HTTP server
Windows, See Microsoft Windows

	Introduction
	Usage
	Low-level interface
	High-level interface
	MP3 audio streams
	Progressive HTTP versus standard HTTP
	Streaming with progressive HTTP
	Restarting a HTTP stream
	Tips for progressive HTTP streaming
	Streaming via TFTP
	Streaming with RTP

	Transferring files
	Monitoring and configuration with SNMP
	The MIB file

	HTTP, FTP and TFTP servers
	TFTP server
	HTTP server
	FTP server

	Function reference
	Public functions
	Native functions

	Index

