
Pawn

embedded scripting language

H0420 Programming Guide & Reference

Version 1.10

November 2011

CompuPhase

ii

“CompuPhase” is a registered trademark of ITB CompuPhase.

“Linux” is a registered trademark of Linus Torvalds.

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

Copyright c© 2005–2011, ITB CompuPhase
Eerste Industriestraat 19–21, 1401VL Bussum, The Netherlands (Pays Bas);
telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The information in this manual and the associated software are provided “as
is”. There are no guarantees, explicit or implied, that the software and the
manual are accurate.

Requests for corrections and additions to the manual and the software can
be directed to ITB CompuPhase at the above address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11

points.

iii

Contents
Overview .1

Event-driven programming .1
Modules . 6
Timers, synchronization and alarms .7
LCD, or other displays .9
RS232 .13
File system, file and path names . 17
Filename matching . 19
INI files . 21
Packed and unpacked strings .22
UU-encoding . 22
Rational numbers .24
Reducing memory requirements .25
Finding errors (debugging) .26
Transferring scripts over RS232 . 29

Public functions .31
Native functions .38
Resources . 112
Index .113

iv

1

Overview

The “pawn” programming language is a general purpose scripting language,
and it is currently in use on a large variety of systems: from servers to em-
bedded devices. Its small footprint, high performance and flexible interface
to the “native” functionality of the host application/system, make pawn

well suited for embedded use.

This reference assumes that the reader understands the pawn language. For
more information on pawn, please read the manual “The pawn booklet —
The Language” which comes with the H0420. For an introduction of the
H0420 and its programming interface, please see the H0420 manual.

Event-driven programming

The H0420 follows an “event-driven” programming model. In this model,
your script does not poll for events, but instead an event “fires” a function
in your script. This function then runs to completion and then returns. In
absence of events, the script is idle: no function runs.

When the pins of one of the 16 switches are shorted, this fires a “button
@button: 32

down” event and the @button function in your script will run.∗ The @button
function then handles the event, perhaps by starting to play another track, or
changing volume or tone settings. After it is done, @button simply returns

∗
Provided that the script contains and @button function; if the script lacks the @button

function, the “button down” and “button up” events would be discarded.

2 � Event-driven programming

or exits the script. The script is now idle, but another event may wake
it up. The event-driven programming model thereby creates reactive and/
or interactive programs. The general manual “The pawn booklet — The
Language” has more details on the event-driven model.

The following script is a first, simple, example for scripting the H0420. In
this script, the first seven switches are “linked” to playing seven tracks,
with hard-coded names. Simplicity is the goal for this first example: later
examples will remove the limitations of this script. For the syntax of the
programming language, please see the general manual “The pawn booklet
— The Language”.

Listing: switches1.p

/* switches1

*

* Play a track that is attached to a switch; there are seven tracks

* associated with 7 switches. The tracks have predefined names.

*

* When pressing a switch for a track that is already playing, the

* track restarts.

*/

@button(pin, status)

{

/* act only on button-down */

if (status == 1)

{

switch (pin)

{

case 0: play !"track1.mp3"

case 1: play !"track2.mp3"

case 2: play !"track3.mp3"

case 3: play !"track4.mp3"

case 4: play !"track5.mp3"

case 5: play !"track6.mp3"

case 6: play !"track7.mp3"

}

}

}

When a function in the script is running, no other event can be handled.
That is, while the script is busy inside, say, the @timer function, a but-
ton press or release event is queued. Only after the pending function has
completed and has returned, will the button press/release event be handled.
Functions do not interrupt or pre-empt each other.

On power-up, the first function that will run is @reset.2 In this function, you

2
@reset is an alias for main.

Event-driven programming � 3

set up the devices that you need: LCD, RS232, I/O ports, or other. In most
programming systems/languages, the program is over as soon as the function
@reset (or another primary entry point) returns —this is the traditional
“flow-driven” programming model. With the event-driven model in pawn

and the H0420, the script continues to be active after @reset returns. In fact,
as the switches1.p script presented above demonstrates, function @reset

is optional: you do not need to include it in your script if you have no
particular initializations to make.

The event-driven programming model becomes convenient when the number
of “events” grows. Each event has a separate “handler” (a public function
in the pawn environment) and it is processed individually. As an example,
the next script also sets an I/O output line for the duration of the track.
That is, while the H0420 is playing MP3 audio, the I/O pin will be high,
and when not playing, it will be low. To toggle the pin, the script uses a
second event: the status of the audio decoder. For testing the script, you
can branch a LED directly on I/O pin 15, for visual feedback. The I/O pin
can also drive an opto-coupler.

Listing: switches2.p

/* switches2

*

* Play a track that is attached to a switch; there are seven tracks

* associated with 7 switches. The tracks have predefined names.

* I/O pin 15 is high when audio is playing and low when it is

* silent.

*

* When pressing a switch for a track that is already playing, the

* track restarts.

*/

const Busy = 15 /* the selected I/O pin */

@reset()

{

/* configure the I/O pin as output and set it low */

configiopin Busy, Output

setiopin Busy, 0

}

@button(pin, status)

{

/* act only on button-down */

if (status == 1)

{

switch (pin)

4 � Event-driven programming

{

case 0: play !"track1.mp3"

case 1: play !"track2.mp3"

case 2: play !"track3.mp3"

case 3: play !"track4.mp3"

case 4: play !"track5.mp3"

case 5: play !"track6.mp3"

case 6: play !"track7.mp3"

}

}

}

@audiostatus(AudioStat: status)

{

if (status == Playing)

setiopin Busy, 1

else

setiopin Busy, 0

}

As is apparent from this second example, function @reset serves for one-time
initialization. Here, it is required, because the I/O pin needs to be configured
for output. On power-on, all I/O pins are pre-configured as inputs.

Function @audiostatus is another event function, that runs when the status
@audiostatus: 31

of the audio decoder changes; the parameter holds the new status, which can
be Stopped, Playing or Paused.

Apart from the “event” functions @button and @audiostatus mentioned
button: 39

earlier, the H0420 programming environment also contains a native functions
button and audiostatus (without the “@” prefix). The button function
returns the current status of a button. With it, you can check the status
of each button at any convenient time. Likewise, the audiostatus function
returns the active status of the audio decoder. With these functions in hand,
you could create a polling loop inside @reset and skip the entire event-driven
paradigm. For illustration, the next sample does this.

Listing: switches2a.p

/* switches2a

*

* The same program as switches2, but now implemented as a non-event

* driven program.

*/

const Busy = 15 /* the selected I/O pin */

Event-driven programming � 5

@reset()

{

/* configure the I/O pin as output and set it low */

configiopin Busy, Output

setiopin Busy, 0

/* we have to keep the status of all switches (in order to detect

* the changes)

*/

new curpin[7]

/* we need an extra variable outside the loop to detect changes

* in status

*/

new AudioStat: curstatus = Stopped

/* this loop should never end */

for (;;)

{

/* test all switches */

new pin, status

for (pin = 0; pin < 7; pin++)

{

status = button(pin)

if (status != curpin[pin])

{

/* status changed, save new status */

curpin[pin] = status

/* ignore button-up, act on button down */

if (status == 1)

{

switch (pin)

{

case 0: play !"track1.mp3"

case 1: play !"track2.mp3"

case 2: play !"track3.mp3"

case 3: play !"track4.mp3"

case 4: play !"track5.mp3"

case 5: play !"track6.mp3"

case 6: play !"track7.mp3"

}

}

}

}

/* test the audio status */

new AudioStat: status = audiostatus()

if (status != curstatus)

{

curstatus = status

if (status == Playing)

setiopin Busy, 1

6 � Modules

else

setiopin Busy, 0

}

}

}

In the flow-driven programming model, you have to poll for events, rather
than respond to them. In programming methodologies, the flow-driven and
event-driven models are reciprocal: the flow-driven model queries for events,
the event-driven model responds to events. Especially in the situations where
the number of events grows, the event-driven model produces neater and
more compact scripts, that require less memory and in addition respond to
the events quicker.

Modules

As a programming tool, pawn consists of the “language” and a “library”.
The language is standardized and common for all applications. The library
gives access to all the functionality that the host application/device provides.
That being the case, the library is typically highly specific to the system
into which pawn is embedded. In other words, pawn lacks something like a
standard library.

On the other hand, it quickly proved convenient to let applications and de-
vices provide similar functionality in a common way. This led to the library
to be split up in several independent modules (which are also documented
independently). An application/device, then, takes its choice of “modules”,
in addition to the application-specific interface functions.

This reference documents the functions that are specific to the H0420 and
the essentials from the several modules that it uses. These modules are:
Core The set of “core” functions (which support the language)

is documented in this book, as well as in the main book on
pawn: “The pawn booklet — The Language”.

Console The H0420 provides the console module for output to an
optional LCD. See the “User Manual” of the H0420 on how
to attach an LCD.
As a side remark: the original console as described in “The
pawn booklet — The Language” also has describes func-
tions for getting user input ; these are stubbed out in the
H0420.

Timers, synchronization and alarms � 7

File I/O General purpose file reading and writing functions, for both
text and binary files.

Fixed-point Fixed-point rational arithmetic is supported. Details on
the fixed-point interface is in a separate application note
“Fixed Point Support Library”.

String functions pawn uses arrays for strings, and the H0420 provides a
general set of string functions.

Time functions The interface to the “date & time of the day”, as well as
the event timer (with a millisecond resolution).

Timers, synchronization and alarms

The H0420 provides various ways to react on timed events. These may be
used in combination, as they run independently of each other.

For activities that must run at a constant interval, the @timer is usually
the most convenient. This timer is set with function settimer to “go off”
each time an specific interval has elapsed. This interval is in milliseconds
—however, the timer resolution is not necessarily one millisecond. Due to
the event-driven nature of the H0420, the precision of the timer depends on
the activity of other public functions in the script. Nevertheless, the @timer
function is the quick and precise general purpose timer.

The @timer function can also be set up as a single-shot timer. A single shot
timer fires are the specified number of milliseconds “from now” and fires only
once. This may be useful for time-out checking, for example.

The second timer is the @alarm function, which is set through the setalarm
function. The primary purpose of this timer is to set a callback that fires
at a specific “wall-clock” time. This timer may also be set to fire only at a
specific date (in addition to a time). The @alarm timer is a repeating timer,
but if you include the date and the year in the alarm specification, it has
effectively become a single-shot timer (“year” numbers in dates do not wrap
around, so they occur only once).

If you use the @alarm function, it may be needed to synchronize the internal
clock of the H0420 to the actual time. This can be done with the functions
setdate and settime. Note that the real-time clock of the H0420 has no
battery backup, so when the power falls out, the current time is lost. At
power-on, the H0420 starts at midnight, 1 January 1970.

8 � Timers, synchronization and alarms

For some purposes, you do not need absolute time, and you can use the
@alarm function simply as a second timer. In comparison with the @timer

function, @alarm as a low resolution.

When events must be synchronized with audio that is playing, the appro-
priate function is the @synch “timer” that works together with an ID3 tag,
and specifically the SYLT frame in this tag. An ID3 tag is a block of informa-
tion that is stored inside the MP3 file; it usually contains artist and album
information, and it may contains other information as well. By adding time-
stamped text to an MP3 file (in its ID3 tag), the @synch function will “fire”
at the appropriate times and holding the line of text in its parameter. The
script can then interpret the text and act appropriately.

The example below plays an MP3 file∗ that was prepared with a SYLT frame
in its ID3 tag. The SYLT tag contains time-stamp strings in the form of:

+14 −15
where:

⋄ the operator (“+” or “−”) indicates a “toggle-on” or “toggle-off” com-
mand for an I/O pin

⋄ the number following the operator indicates the I/O pin

Any number of codes may be on single time-stamped line, so you can turn on
several I/O pins and turn off others all in the same command. For testing
purposes, it is convenient to connect four LEDs to the I/O pins 12 to 15
(inclusive) —this will give you visual feedback of the command execution.

Listing: sylt.p

/* Plays an audio track and turns on and off LEDs based on the

* commands stored in the ID3 tag (the SYLT frame).

*

* The commands have the form "+14 -12", where the numbers stand

* for the I/O pins, and "+" and "-" mean "turn on" and "turn

* off" respectively. So in this example, I/O pin 14 is turned

* on and I/O pin 12 is turned off.

*/

@reset()

{

/* configure 4 I/O pins as output */

for (new i = 12; i <= 15; i++)

configiopin i, Output

∗
The original MP3 file was created by Orb Gettarr, and placed under the “Creative Com-

mons” license.

LCD, or other displays � 9

/* Orb Gettarr: "From The Machine World"

* See: http://www.opsound.org/opsound/pool/gettarr.html

*/

play !"From-The-Machine-World.mp3"

}

@synch(const event[])

{

for (new index = 0; /* test is in the middle */ ; index++)

{

/* find first ’+’ or ’-’ */

new c

while ((c = event{index}) != ’-’ && c != ’+’ && c != EOS)

index++

if (c == EOS)

break /* exit the loop on an End-Of-String */

/* get the value behind the operator (’+’ or ’-’) */

new pin = strval(event, index + 1)

/* turn on or off the led (based on the operator) */

setiopin pin, (c == ’+’)

}

}

LCD, or other displays

The console functions used throughout the main pawn manual “The pawn

booklet — The Language” output to an LCD that is optionally connected to
one of the connector blocks on the H0420. The H0420 is directly compatible
with a wide range of character LCDs: those using the standard HD44780
controller, and a positive LC-driving voltage. With a simple voltage inversion
circuit, the H0420 can also be made compatible with those LCDs that need
a negative LC-driving voltage —though you may need to adjust the contrast
setting to a non-default value (function setattr). Similarly, the H0420 can
also use OLEDs, PLEDs or VFDs that use a command set that is compatible
with the HD44780 controller.

In addition to character LCDs, the H0420 supports graphic displays that
are based on the KS0108 controller. The graphic LCDs use a built-in
monospaced font of 6 × 8 pixels with the Latin-1 character set and a few
additional characters.

Before sending character data to the LCD, the LCD must be configured.
console: 44

This is done through the console function, also described in “The pawn

10 � LCD, or other displays

booklet — The Language”. The first two parameters of the function are
the numbers of columns and lines of the display. The columns and lines are
measured in characters for a character display and in pixels for a graphic
display. Typical column sizes for character LCDs are 16, 20 and 40 and
typical line counts are 1, 2 and 4. For a graphic LCD, typical resolutions
are 64× 64 and 128× 64.

The third parameter for the console function holds the cursor type (a graphic
display may not support a cursor). This value must be one of the following:

CursorNone No cursor at all, this is the default.

CursorStable A non-blinking cursor.

CursorBlink A blinking cursor.

After having set up the LCD, the standard console output functions, like
print, printf, gotoxy, and clrscr are available. The console input func-
tions, such as getvalue and getstring, are not available (and they are not
documented in this manual). A further limitation of the console support
is that the standard character LCDs do not support colours. Instead of
changing the colour, the setattr function adjusts the contrast of the LCD.
Graphic LCDs support inverse video; most character LCDs do not.

When an LCD is used, the first 11 I/O pins (pins numbered from 0 to
10) are unavailable for general input and output. The analogue pin is also
unavailable for output, as it regulates the contrast of the LCD. A graphic
LCD may require one or two extra I/O pins, depending on the configuration
of the display and how it is wired to the H0420.

The following example script performs various functions, in addition to dis-
playing information on the LCD, and it is therefore fairly large. This script
assumes a character display (only the configuration would be different for a
graphic LCD). Its functionality is:

⋄ Start tracks on a switch press. When a switch is pressed during play-back,
the old track is aborted and the new track plays. This script acts only on
four of the sixteen possible switches.

⋄ Initializes and prints file information on an LCD. In this particular exam-
ple, the LCD is one that has four lines and twenty columns per line. For
other LCD lay-outs, you need to modify the call to the console function
(near the top of the @reset function).

⋄ Reads data from the MP3 frame headers as well as from the ID3 tag (if
any).

LCD, or other displays � 11

⋄ Sets up and uses a timer, to refresh the LCD. This function also detects
whether an audio stream is still playing. The timer is set up in function
@reset, and the functionality itself is in the public function @timer.

Listing: mp3info.p

/* This example program demonstrates:

* o The use of an LCD and printing information of the MP3 file

* that is currently playing.

* o Browsing through the MP3 tracks on the CD-ROM

* o Getting information from the MP3 decoder (bitrate and others)

* o Getting information from the ID3 tag.

*

* At every switch press, go to the next track or the previous

* track (depending on the switch). The filenames of the tracks

* are read from the card.

*

* The information from the MP3 decoder is dynamic, that of the

* ID3 tag is static.

*/

new TrackCount

new CurrentTrack

@reset()

{

/* the setting below is for an LCD with 4 rows and 20 columns;

* you need to adjust it for other LCDs

*/

console 20, 4

consctrl 1, 0 /* disable auto-wrap */

/* the updating of the LCD occurs on a timer */

settimer 2000

TrackCount = fexist(!"*.mp3")

CurrentTrack = 0

}

@button(pin, status)

{

/* act only on button-down, and only on pins 0 or 1 */

if (status == 1 && pin < 2)

{

if (pin == 1)

{

CurrentTrack++

if (CurrentTrack >= TrackCount)

CurrentTrack = 0

}

else

{

CurrentTrack--

if (CurrentTrack < 0)

CurrentTrack = TrackCount - 1

12 � LCD, or other displays

}

/* find the new filename */

new filename[100 char]

fmatch filename, !"*.mp3", CurrentTrack

play filename

clrscr /* also resets the cursor to (1,1) */

print filename

}

}

@timer()

{

new buffer[128 char]

static Info

if (audiostatus() == Stopped)

{

if (Info >= 0)

{

Info = -1

clrscr

print !"Druk op een knop..."

}

return

}

if (Info < 0)

Info = 0

gotoxy 1, 2

switch (Info)

{

case 0:

printf !"Bitrate: %d kb/s", headerinfo(MP3_Bitrate)

case 1:

printf !"Freq: %d kHz", headerinfo(MP3_SampleFreq)/1000

case 2:

printf !"Avg.rate: %d kb/s", headerinfo(MP3_AvgBitrate)

case 3:

{

taginfo ID3_Title, buffer

printf !"Title: %s", buffer

}

case 4:

{

taginfo ID3_Artist, buffer

printf !"Artist: %s", buffer

}

case 5:

{

taginfo ID3_Album, buffer

printf !"Album: %s", buffer

}

RS232 � 13

case 6:

{

taginfo ID3_Comment, buffer

printf !"Comment: %s", buffer

}

case 7:

{

taginfo ID3_Copyright, buffer

printf !"Copyright: %s", buffer

}

case 8:

{

taginfo ID3_Year, buffer

printf !"Year: %s", buffer

}

case 9:

{

taginfo ID3_Track, buffer

printf !"Track: %s", buffer

}

case 10:

{

taginfo ID3_Length, buffer

printf !"Length: %s ms", buffer

}

}

clreol

if (++Info > 10)

Info = 0

}

RS232

The H0420 has a standard serial line, using the RS232 protocol. All common
Baud rates and data word lay-outs are supported. The interface optionally
supports software handshaking, but no hardware handshaking. The RTS and
CTS lines are linked (connected) at the connector; the DTR and DSR lines
are connected too. Most programs/devices that use hardware handshaking
will see the H0420 as a transparent unit: it accepts data when the other
device/terminal does so too.

Software handshaking is optional. When set up, software handshaking uses
the characters XOFF (ascii 19, Ctrl-S) to request that the other side stops
sending data and XON (ascii 17, Ctrl-Q) to request that it resumes sending
data. These characters can therefore not be part of the normal data stream
(as they would be misinterpreted as control codes). Software handshaking is

14 � RS232

therefore not suitable to transfer binary data directly (since two byte values
are “reserved”). Instead, binary data should be transferred using a protocol
like UU-encode.

The example script below functions as a simple terminal. It accepts a few
commands that it receives over the serial port. It understands the basic
commands to start playing files, to query which files are on the Compact
Flash card, and to set volume and balance.

Listing: serial.p

@reset()

{

setserial 57600, 8, 1, 0, 0

sendstring !"READY: "

}

@receive(const string[])

{

static buf[40 char]

strcat buf, string

if (strfind(buf, "\r") >= 0 || strfind(buf, "\n") >= 0)

{

parse buf

buf[0] = ’\0’ /* prepare for next buffer */

}

}

stripline(string[])

{

/* strip leading whitespace */

new span

for (span = 0; string{span} != EOS && string{span} <= ’ ’; span++)

{}

strdel(string, 0, span)

/* strip trailing whitespace */

span = strlen(string)

while (span > 0 && string{span-1} <= ’ ’)

span--

if (span >= 0)

string{span} = EOS

}

parse(string[], size=sizeof string)

{

stripline string

new mark = strfind(string, " ")

if (mark < 0)

mark = strlen(string)

RS232 � 15

if (strcmp(string, !"PLAY", true, mark) == 0)

{

/* remainder of the string is the filename */

strdel string, 0, mark

stripline string

if (!play(string))

sendstring !"Error playing file (file not found?)"

}

else if (strcmp(string, !"STOP", true, mark) == 0)

stop

else if (strcmp(string, !"VOLUME", true, mark) == 0)

{

strdel string, 0, mark

stripline string

setvolume .volume=strval(string)

}

else if (strcmp(string, !"BALANCE", true, mark) == 0)

{

strdel string, 0, mark

stripline string

setvolume .balance=strval(string)

}

else if (strcmp(string, !"LIST", true, mark) == 0)

{

strdel string, 0, mark

stripline string

if (strlen(string) == 0)

strpack string, "*", size

new count = exist(string)

new filename[100 char]

for (new index = 0; index < count; index++)

{

selectfile filename, string, index

sendstring filename

sendstring !"\n"

}

}

else

sendstring !"Unknown command or syntax error\n"

sendstring !"READY: "

}

Incoming data may be received character by character or in “chunks”. Espe-
cially when the data is typed in by a user, it is likely that each invocation of
@receive will only hold a single character. These characters or string seg-
ments must be assembled into whole commands. This script assumes that
there is a single command per line.

16 � RS232

When @receive sees a line terminator (a “newline” or cr character), it
sends the complete line to the function parse that decodes it using a few
string manipulation functions. The function stripline is a custom func-
tion that removes leading and trailing “white space” characters (spaces, tab
characters and others). The command “play” takes a parameter that follows
the keyword “play” after a space separator. To play the file “track1.mp3”
(and assuming that you are connected to the H0420 through a simple ter-
minal), you would type:

play track1.mp3

The commands “volume” and “balance” also take a parameter (a number, in
this case). The command “list” optionally takes a file pattern as a parameter;
if the pattern is absent, all files on the Compact Flash card are listed (i.e.
the command “list” is short for “list *”).

For transferring binary data over RS232, you may choose to convert the bi-

uudecode: 104
nary stream to UU-encode and transfer it as text, or to replace the public
function @receive by @receivebyte and get bytes individually. When re-
ceiving bytes through @receivebyte, you should set up the serial port to
use no software handshaking —otherwise the bytes that represent the XON
& XOFF codes will still be gobbled internally. In addition, as the bytes of
a stream are passed individually the the script, there is quite some over-
head and the effective transfer rate is not very high. Passing binary data as
UU-encoded strings (via @receive) has the advantage that you can still use
software handshaking to transfer the data and throughput is likely higher
as well. The drawback is that the sender must UU-encode the data before
transfer.

When the incoming data has a structure in the form of well defined packets,
you can use the function packetfilter to set up the definition of the packet
format, after which the event function @receivepacket receives complete
packets. This relieves your script from assembling packets from individual
bytes and filter/handle them manually, plus that it has a better performance
(i.e. better suited for high Baud rates).

The H0420 software toolkit also comes with a few ready-to-run scripts,
among which is a script that implements a full serial protocol, similar to
that of professional DVD players. These scripts come with commented source
code and documentation in HTML format, and may therefore serve as (ad-
vanced) programming examples.

File system, file and path names � 17

File system, file and path names

The H0420 accepts Compact Flash cards that are formatted as FAT16 or
FAT32. Most Compact Flash cards will already have been formatted in
either of these file systems. FAT16 is more suitable for smaller capacities
(less than 256 MB) while FAT32 is more appropriate for larger capacities.

The H0420 supports subdirectories. It does not support relative paths, how-
ever, as it has no concept of a “working directory”. All paths are relative to
the root. The H0420 does not use a drive letter either —it only supports a
single drive with a single partition.

The path separator may either be a backslash (“\”, used in Microsoft Win-
dows) or a forward slash (“/”, used in Linux and other variants of unix).
These may also be used interchangeably. Note that the backslash is also
the default “control character” in pawn, so you need to double it in a stan-
dard pawn string; alternatively, you can use “raw strings”. See the pawn

“Language Guide” for details on the control character and (raw) strings.

Paths and filenames are case insensitive for the H0420. This is similar to
Windows and unlike Linux and unix.

As an example, the following pawn strings all refer to the same file (in the
same directory):

"/media/classical.mp3"

"media/classical.mp3" initial slash is optional
"\\Media\\Classical.MP3" double backslashes (normal string)
\"\MEDIA\CLASSICAL.MP3" raw string
!"/media/classical.mp3" packed string

• General file I/O

Apart from “playing” audio files, the H0420 can read and write text and
binary files. This allows capabilities such as writing usage information to a
“log” file, storing settings and/or play files according to playlists. If the
H0420 is connected to a computer, e.g. via RS232, such configuration files or
playlist files can also be updated through this connection —without needing
to extract the Compact Flash card.

Typically, the files that you wish to read or write are text files, and these files
are probably created or analysed on software running on desktop computers.
Operating systems differ in their conventions for file/path names (as was

18 � File system, file and path names

discussed earlier), as well as the encoding of text files. The file I/O interface
addresses the encoding difference to some extent, in order to be compatible
with a wide range of files and hosts.

Due to memory restraints, the H0420 can only hold two files open at any
time for scripting. The file I/O needed for playing MP3 files are handled
separately. That is, the script can open two files and still play MP3 audio.
You can manipulate more than two files in a single script, but only two files
can be open at any time —before accessing a third file, you must close one
of the earlier two files.

unix uses a single “line feed” character to end a text line (ascii 10), the
Apple Macintosh uses a “carriage return” character (ascii 13) and Microsoft
DOS/Windows use the pair of carriage return and line feed characters. Many
high-level protocols of the TCP/IP protocol suite also require both a carriage
return and a line feed character to end a line —examples are RFC 854 for
Telnet, RFC 821 for smtp and RFC 2616 for http.

The file I/O support library provides functions for reading lines and blocks
from a file, and for writing lines/blocks to a file. The line reading functions
are for text files and the block reading functions for binary files. Additional
functions allow you to read through a file character by character, or byte
by byte, and to write a file character by character. The character reading/
writing functions are indifferent for text versus binary files.

The line reading functions, fread and fwrite, check for all three common
line ending specifications: cr, lf and cr–lf. If a lf character follows a cr

character, it is read and considered part of a cr–lf sequence; when any other
character follows cr, the line is assumed to have ended on the cr character.
This implies that you cannot embed single cr characters in a DOS/Windows
or unix file, and neither use lf characters in lines in a Macintosh file. It is
uncommon, though, that such characters appear. The pair lf–cr (cr–lf
in the inverted order) is not supported as a valid line-ending combination.

The line writing function writes the characters as they are stored in the
string. If you wish to end lines with a cr–lf pair, you should end the string
to write with \r\n.

The line reading and writing functions support UTF-8 encoding when the
string to read/write is in unpacked format. When the source or destination
string is a packed string, the line functions assume ascii or another 8-bit
encoding —such as one of the ISO/IEC 8859 character sets (ISO/IEC 8859-

Filename matching � 19

1 is informally known as “Latin-1”). Please see the manual “The pawn

booklet — The Language” for details on packed and unpacked strings.

The block reading and writing functions, fblockread and fblockwrite,
transfer the specified number of cells as a binary block. The file is assumed
to be in Little Endian format (Intel byte order). On a Big Endian micro-
processor, the block reading/writing functions translate the data from Big
Endian to Little Endian on the flight.

The character reading and writing functions, fgetchar and fputchar, read
and write a single byte respectively. Byte order considerations are irrelevant.
These functions apply UTF-8 encoding by default, but they can also read/
write raw bytes.

Next to data transfer functions, the library contains file support functions
for opening and closing files (fopen, fclose), checking whether a file ex-
ists, (fexist), browsing through files (fexist and fmatch), deleting a file
(fremove), and modifying the current position in the file (fseek).

Filename matching

The filename matching functions fmatch and fexist support filenames with
“wild-card” characters —also known as filename patterns. The concept of
these patterns exists in all contemporary operating systems (such as Mi-
crosoft Windows and unix/Linux), but they differ in minor ways in which
characters they use for the wild-cards.

Pattern matching is not only done for filename selection; the function pack-

etfilter sets up two patterns for automatically discovering packet bound-
aries and automatically accepting packets for forwarding to the public func-
tion @receivepacket. The matching of serial packets follows the same gen-
eral rules as the matching of filenames.

The patterns described here are a simplified kind of “regular expressions”
found in compiler technology and some developer’s tools. The patterns do
not have the power or flexibility of full regular expressions, but they are
simpler to use.

Patterns are composed of normal and special characters. Normal characters
are letters, digits, and other a set of other characters; actually, everything
that is not a special character is “normal”. The special characters are dis-
cussed further below. Each normal character matches one and only one

20 � Filename matching

character —the character itself. For example, the normal character “a” in
a pattern matches the letter “a” in a name or string. A pattern composed
entirely of normal characters is a special case since it matches only one ex-
actly one name/string: all characters must match exactly. The empty string
is also a special case, which matches only empty names or strings.

Depending on the context, patterns may match in a case-sensitive or a case-
insensitive way. Filename matching is case-insensitive, but packet matching
is case-sensitive.

Special pattern characters are characters that have special meanings in the
way they match characters in filenames. They may match a single instance
or multiple occurrences of any character, or only a selected set of characters
—or they may change the sense of the matching of the rest of the pattern.
The special pattern characters are:

? Any
The any pattern ? matches any single character.

* Closure
The closure pattern * matches zero or more non-specific characters.

[abc] Set
The set pattern [abc] matches a single character in the set (a, b,
c). On case-insensitive matches, this will also match any character
in the set (A, B, C). If the set contains the] character, it must be
quoted (see below). If the set contains the hyphen character -, it
must be the first character in the set, be quoted, or be specified as
the range ---.

[a-z] Range set
The range pattern [a-z] matches a single character in the range
a through z. On case-insensitive matches, this will also match any
character in the range A through Z. The character before the hyphen
must sort lexicographically before the character after the hyphen.
Sets and ranges can be combined within the same set of brackets;
e.g. the pattern [a-c123] matches any character in the set (a, b,
c, 1, 2, 3).

[!abc] Excluded set
The excluded set pattern [!abc] matches any single character not
in the set (a, b, c). Case-insensitive systems also exclude characters
in the set (A, B, C). If the set contains the hyphen character, it must
immediately follow the ! character, be quoted, or be specified as

INI files � 21

the range ---. In any case, the ! must immediately follow the [

character.

{abc} Repeated set
The repeated set is similar to the normal set, [abc], except that
it matches zero or more occurrences of the characters in the set.
It is similar to a closure, but matching only a subset of all charac-
ters. Similar to single character sets, the repeated set also supports
ranges, as in {a-z}, and exclusions, as in {!abc}.

‘x Quoted (literal) character
A back-quote character ‘ removes any special meaning from the
next character. To match the quote character itself, it must be
quoted itself, as in ‘‘. The back-quote followed by two hexadecimal
digits gives the character with the byte value of the hexadecimal
number. This can be used to insert any character value in the
string, including the binary zero. The back-quote character is also
called the grave accent .

Some patterns, such as *, would match empty names or strings. This is
generally undesirable, so empty names are handled as a special case, and
they can be matched only by an empty pattern.

pawn uses the zero character as a string terminator. To match a zero byte,
you must use ‘00 in the pattern. For example, the pattern a[‘00-‘1f]

matches a string that starts with the letter “a” followed by a byte with a
value between 0 and 31.

INI files

Many programs need to store settings between sessions. For this reason, the
library provides a set of high-level functions for storing the configuration
in an “INI” file. An INI file is a plain text file where fields are stored as
name/value pairs. The name (called the “key” in the function descriptions)
and the value are separated by an equal sign (“=”) or a colon (“:”) —the
colon separator is an extension of this library.

INI files are optionally divided into sections. A section starts with a section
name between square brackets.

INI files are best known from Microsoft Windows, but several unix and
Linux programs also use this format (although the file extension is sometimes

22 � Packed and unpacked strings

“.cfg” instead of “.ini”). Playlist files in Shoutcast/Icecast format also use
the syntax of INI files.

Packed and unpacked strings

The pawn language does not have variable types. All variables are “cells”
which are typically 32-bit wide (there exist implementations of pawn that
use 64-bit cells). A string is basically an array of cells that holds characters
and that is terminated with the special character ’\0’.

However, in most character sets a character typically takes only a single byte
and a cell typically is a four-byte entity: storing a single character per cell
is then a 75% waste. For the sake of compactness, pawn supports packed
strings, where each cell holds as many characters as fit. In our example, one
cell would contain four characters, and there is no space wasted.

At the same time, pawn also supports unpacked strings where each cell holds
only a single character, with the purpose of supporting Unicode or other
wide-character sets. The Unicode character set is usually represented as a
16-bit character set holding the 60,000 characters of the Basic Multilingual
Plane (BMP), and access to other “planes” through escape codes. A pawn

script can hold all characters of all planes in a cell, since a cell is typically
at least 32-bit, without needing escape codes.

Many programming language solve handling of ascii/Ansi character sets
versus Unicode with their typing system. A function will then work either
on one or on the other type of string, but the types cannot be mixed. pawn,
on the other hand, does not have types or a typing system, but it can check,
at run time, whether a string a packed or unpacked. This also enables you to
write a single function that operates on both packed and unpacked strings.

The functions in the H0420 firmware have been constructed so that they
work on packed and unpacked strings.

UU-encoding

For transmitting binary data over communication lines/channels or protocols
that do not support 8-bit transfers, or that reserve some byte values for
special “control characters”, a 6-bit data encoding scheme was devised that
uses only the standard ascii range. This encoding is called “UU-encoding”.

UU-encoding � 23

This daemon can encode a stream of binary data into ascii strings that can
be transmitted over all networks that support ascii.

The basic scheme is to break groups of 3 eight bit bytes (24 bits) into 4 six bit
characters and then add 32 (a space) to each six bit character which maps it
into the readily transmittable character. As some transmission mechanisms
compress or remove spaces, spaces are changed into back-quote characters
(ascii 96) —this is a modification of the scheme that is not present in the
original versions of the UU-encode algorithm.

Another way of phrasing this is to say that the encoded 6 bit characters are
mapped into the set:

‘!"#$%&’()*+,-./012356789:;<=>?@ABC...XYZ[\]^_

for transmission over communications lines.

A small number of eight bit bytes are encoded into a single line and a count
is put at the start of the line. Most lines in an encoded file have 45 encoded
bytes. When you look at a UU-encoded file note that most lines start with
the letter “M”. “M” is decimal 77 which, minus the 32 bias, is 45. The pur-
pose of this further chopping of the byte stream is to allow for handshaking.
Each chunk of 45 bytes (61 encoded characters, plus optionally a newline)
is transferred individually and the remote host typically acknowledges the
receipt of each chunk.

Some encode programs put a check character at the end of each line. The
check is the sum of all the encoded characters, before adding the mapping,
modulo 64. Some encode programs have bugs in this line check routine; some
use alternative methods such as putting another line count character at the
end of a line or always ending a line with an “M”. The functions in this
module encode byte arrays without line check characters, and the decoder
routine ignores any “check” characters behind the data stream.

To determine the end of a stream of UU-encoded data, there are two common
conventions:

⋄ When receiving a line with less that 45 encoded bytes, it signals the last
line. If the last line contains 45 bytes exactly, another line with zero
bytes must follow. A line with zero encoded bytes is a line with only a
back-quote.

⋄ A stream must always be ended with a line with 0 (zero) encoded bytes.
Receiving a line with less than 45 encoded bytes does not signal the end
of the stream — it may indicate that further data is only delayed.

24 � Rational numbers

Rational numbers

The pawn programming language supports only one data type: the 32-bit
integer, called a cell . With special operators and a strong tag, the pawn

language can also do rational arithmetic, with three decimal digits. To use
the “fixed-point arithmetic”, your script must include the file rational.inc,
for example by using the following directive:

#include <rational>

The fixed point format used in this library uses three decimal digits and
stores the values in two’s complement. This gives a range of -2147483 to
+2147482 with 3 digits behind the decimal point. Fixed point arithmetic
also goes by the name “scaled integer” arithmetic. Basically, a fixed point
number is the numerator of a fraction where the denominator is implied.
For this library, the denominator is 1000 —therefore, the integer value 12345
stands for 12345

1000
or 12.345.

In rounding behaviour, however, there is a subtle difference between fixed
point arithmetic and straight-forward scaled integer arithmetic: in fixed
point arithmetic, it is usually intended that the least significant digit should
be rounded before any subsequent digits are discarded; but many scaled
integer arithmetic implementations just “drop” any excess digits. In other
words, 2/3 in fixed point arithmetic results in 0.667, which is more accurate
than the scaled integer result of 0.666.

To convert from integers to fixed point values, use one of the functions
fixed or strfixed. The function fixed creates a fixed point number with
the same integral value as the input value and a fractional part of zero.
Function strfixed makes a fixed point number from a string, which can
include a fractional part.

A user-defined assignment operator is implemented to automatically coerce
integer values on the right hand to a fixed point format on the left hand.
That is, the lines:

new a = 10

new Fixed: b = a

are equivalent to:

new a = 10

new Fixed: b = fixed(a)

To convert back from fixed point numbers to integers, use the functions
fround and ffract. Function fround is able to round upwards, to round

Reducing memory requirements � 25

downwards, to “truncate” and to round to the nearest integer. Function
ffract gives the fractional part of a fixed point number, but still stores this
as a fixed point number.

The common arithmetic operators: +, -, * and / are all valid on fixed point
numbers, as are the comparison operators and the ++ and -- operators. The
modulus operator % is forbidden on fixed point values.

The arithmetic operators also allow integer operands on either left/right
hand. Therefore, you can add an integer to a fixed point number (the result
will be a fixed point number). This also holds for the comparison operators:
you can compare a fixed point number directly to an integer number (the
return value will be true or false).

Reducing memory requirements

The H0420 has 16 kiB of memory available to scripting. This limit is declared
in the h0420.inc file, so that the pawn compiler is aware of this limit and can
(hopefully) verify that the script fits into the memory. If the pawn compiler
complains that the script is too large, you must find a way to reduce the size
of the script after compilation.

⋄ If performance is not critical, switch on code overlays. Overlays set a
maximum size of 4 kiB per function, but the number of functions is un-
limited. To enable code overlays, set the option “-V” on the command
line for the pawn compiler, or check the “overlay code generation” option
in the Quincy IDE.

⋄ Some space will be gained if you compiled without run-time checks . To
do so, add the option “-d0” on the command line for the pawn compiler,
or set the “debug level” option to zero in the Quincy IDE. This removes
array bounds checks and assertions.

⋄ Make sure that the optimization level is set to “2”; the pawn compiler
generates more compact code. The relevant option is “-O2”. Note that
this option is set by default.

⋄ See if there is similar code repeated several times in the script. Such code
could then be put in a separate function, and this function is then re-used
for every routine needing the code.

26 � Finding errors (debugging)

⋄ At a smaller scale, if the same value gets calculated several times in a func-
tion, declare instead a new variable that holds this calculated value. The
academic terminology for replacing common sub-expressions with helper
variables is strength reduction.

⋄ Verify the stack usage (use the option “-v” of the compiler; optionally use
“-r” to get a detailed report). If the compiler reports that there is ample
unused stack space, you may reduce the size of the stack with the compiler
option “-S” or adding a “#pragma dynamic” in your script —the latter
is probably more convenient, as you do not have to remember to add an
option to the command line at each compile.

⋄ If you use strings, make sure that these are packed strings. Packed strings
take less space on the stack and/or heap. Literal strings also take less
space in the “literal pool” of the script.

⋄ When a function has an array parameter (such as a string) with a default
value, declare the parameter as “const” if possible. With a non-const
parameter, a copy of the default value of the parameter must be made on
the stack, because the function should not be able to change the default
parameter. Declaring the parameter as const allows the compiler to avoid
this copy.

If a script still does not fit in the available memory, it must be split into
separate scripts, where each script performs a different task. The scripts
can switch to other scripts (and thereby to other tasks) through the exec

function.

Finding errors (debugging)

If a script behaves in an unexpected (or undesired) way, there are various
methods to see which code is responsible for the behaviour.

If there is already an LCD attached to the H0420, a simple method is to
print messages and values of variables at critical points, so that these can be
inspected while the program is running. Even if you do not need an LCD
for the H0420 in its “production use”, it may be convenient to have an LCD
for the specific purpose of debugging the script. For setting up and using an
LCD, see page 9 and the example program mp3info.p on page 11.

If no LCD is available, or if the I/O pins for the LCD are already in use
for other purposes, an alternative is to send these “trace” strings over the

Finding errors (debugging) � 27

serial line. This is not as flexible, as the serial interface lacks the equivalent
of printf, a “formatted print” function, but with the companion functions
of the string module, it provides adequate tracing facilities. See the func-
tions setserial and sendstring in this reference for setting up a serial
connection on pages 85 and 81 respectively.

The pawn toolkit comes with a source level debugger that supports “remote
debugging”, meaning that the debugger controls the script running on the
H0420 from a host PC. The remote debugging facility also uses the serial
line, but it sets it up automatically. To use remote debugging, follow these
steps:

⋄ If you are using the Quincy IDE, make sure that the IDE is configured for
remote debugging. In the “Options. . .” dialog (under the “Tools” menu),
choose the tab-page “Debugger” and select either COM1: or COM2:.

⋄ Compile the script with full debug information (compiler option “-d2” or
select “debug level” 2 from the Quincy IDE) and store the compiled script
on the Compact Flash card.

⋄ Also keep the compiled script and its source code on the local PC. It is
assumed that the script resides on a local hard disk of your PC while
you edit and build it, and that the resulting “autorun.amx” file is then
transferred to the Compact Flash card.

⋄ If you are using the Quincy IDE, you have to set a breakpoint in the
source code, otherwise the IDE will not launch the debugger. Once the
breakpoint is set, select the option “Run” from the menu/toolbar (or press
F5).

If not using the Quincy IDE, launch the pawn debugger separately, with
the filename of the compiled script and the option “-rs232”. The filename
is always “autorun.amx”. The command line is therefore:

pawndbg autorun.amx -rs232

This assumes that you are using the first serial port (“COM1:”) on the
host PC. If you use the second serial port, use:

pawndbg autorun.amx -rs232=2

on Microsoft Windows and
pawndbg autorun.amx -rs232=1

on Linux or UNIX.Note that the serial ports are numbered from zero in
Linux —ttyS1 is what Microsoft Windows would call COM2:.

28 � Finding errors (debugging)

⋄ Insert the Compact Flash card in the H0420 and optionally reset (or
power-cycle) the device. The debugger should now display the first line of
function @reset.

When the H0420 is reset and the script that it loads has debug information,
it waits up to 2 seconds for a debugger to connect. If no debugger connects,
the H0420 runs the script without debugger support. This is why it is advised
to start the debugger before resetting the H0420.

After the script has been fully debugged, you will want to recompile it with-
out debugging support: avoids the start-up delay (when the H0420 polls for
a debugger to connect), and it reduces the size of the script and increases
performance.

Transferring scripts over RS232 � 29

Transferring scripts over RS232

The script for the H0420 must reside on the Compact Flash card (in the
root directory). For simple scripts, it is easy to write the script, compile it
and copy the resulting “autorun.amx” onto the Compact Flash card. To
copy the file, you can use a common “card reader” that branches on an USB
port.

During development and debugging, with many “write/compile/copy/test”
cycles, constantly swapping the Compact Flash card between the H0420
MP3 player and the card reader on the PC may become a nuisance. An
alternative is to transfer the autorun.amx over a serial line. The function
to transfer files over the serial line works through the debugger or from inside
the Quincy IDE. The debugger/IDE is able to synchronize with the H0420
MP3 player if the compiled script contains debugging information, or after
a reset.

The first step is to compile the script as usual. If you are using the Quincy
IDE, choose then option Transfer to remote host from the Debug menu. If not
using the Quincy IDE, launch the debugger with the compiled script name
(“autorun.amx”), as described in the previous section. Then, you need to
reset the H0420, either by pressing the “reset” switch on the board or by
power-cycling the device.

With the Quincy IDE, the transfer will now proceed automatically, but with
the stand-alone debugger, you will need to give the command “transfer”
to send the latest release of the autorun.amx file to the H0420, which will
then write it onto the Compact Flash card. After the copy is complete, the
H0420 will automatically restart, and the debugger restarts too.

If transferring the autorun.amx is the only purpose of launching the de-
bugger, you may also give the transfer command as a command line option.
For instance, the line below starts the debugger, transfers the file and then
exits:

pawndbg autorun.amx -rs232=1 -transfer -quit

There is also a DOS/Windows “batch” file, called upload.bat, that contains
the above command. Again, this batch file and the debugger commands
described above do not apply if you use the Quincy IDE.

Especially for purposes of uploading compiled scripts, it can be useful to
have the H0420 reset on a command that comes over the same RS232 line

30 � Transferring scripts over RS232

—because the H0420 MP3 player only picks up a debugger synchronization
attempt within 2 seconds after a reset. A convenient hook is in the example
below: the @reset function sets up the serial port with a Baud rate of 57600
bps and the @receivebyte function responds to the ’ !’ character. These
Baud rate and synchronization command are the same as used by the pawn

debugger, meaning that in attempting to synchronize with the debugger
support in the H0420 MP3 player, pawndbg will reset the MP3 player if it
was not polling for the debugger.

Listing: Reset the MP3 player on receiving a ’ !’ on the RS232

@reset()

{

setserial 57600

}

@receivebyte(value)

{

if (value == ’!’)

reset

}

31

Public functions

@alarm The timer alarm went off

Syntax: @alarm()

Returns: The return value of this function is currently ignored.

Notes: The alarm must have been set with setalarm.

After firing, the alarm is automatically reset.

See also: @timer, setalarm

@audiostatus The audio status changed

Syntax: @audiostatus(AudioStat: status)

status The new audio status.

Returns: The return value of this function is currently ignored.

Notes: The status is one of the following:

Stopped (0) The audio is stopped.

Paused (1) The audio is paused and can be resumed.

Playing (2) The audio is currently playing.

FadeCompleted(5) The volume fade (started with setvolume) has
completed.

In special circumstances, you may receive a “Stopped” no-
tification without receiving a “Playing” signal earlier. This
happens in particular when a file that was passed to function
play did not contain valid MP3 audio data.

See also: audiostatus, play, pause, resume

32 � @button

@button A switch was pressed or released

Syntax: @button(pin, status)

pin The switch number, between 0 and 15.

status The new status: 1 for “down” and 0 for “up”.

Returns: The return value of this function is currently ignored.

Example: See mp3info.p on page 11.

See also: @input, button

@eject The card is removed

Syntax: @eject()

Returns: The return value of this function is currently ignored.

Notes: This function is called when the device detects that the Com-
pactFlash card is removed (“ejected”). After completion of
the @eject function, the H04x0 series of MP3 controllers do
an implicit reset in approximately one second

If you need to store data or status information on eject, you
need to store such information in the configuration area of
the of the H0420 itself —see storeconfig. You cannot write
device data or status information to the CompactFlash card
(because it is “ejected”. . .)

See also: storeconfig

@input A digital pin changed

Syntax: @input(pin, status)

pin The pin number, between 0 and 15.

status The new logical level (0 or 1).

Returns: The return value of this function is currently ignored.

@receive � 33

Notes: Only the pins that are configured as “input” can cause this
event function to execute. See configiopin for configuration.

This function is invoked when the logical level of an input
pin changes. The function getiopin may be used to read the
active status of a pin.

The function inputlapse can be used to measure time inter-
vals between changes on an input pin.

See also: @button, configiopin, getiopin, inputlapse

main Script entry point

Syntax: main()

Returns: The return value of this function is currently ignored.

Notes: main is an alternative name for function @reset.

See also: @reset

@receive Data from RS232 is received

Syntax: @receive(const string[])

string The data received as a zero-terminated string.
The string may contain one or more characters.

Returns: The return value of this function is currently ignored.

Notes: The H0420 optionally uses software handshaking (XON/OFF)
—see setserial. Due to this design, bytes with the values 17
(0x11, Ctrl-Q), 19 (0x13, Ctrl-S) and zero cannot be received
with this function. When you need to transfer binary data,
you should encode it using a protocol like UU-encode.

Example: See serial.p on page 14.

See also: @receivebyte, @receivepacket, sendbyte, sendstring,
setserial

34 � @receivebyte

@receivebyte A single byte is received from RS232

Syntax: @receivebyte(value)

value The data received. This may be any value be-
tween 0 and 255.

Returns: The return value of this function is currently ignored.

Notes: The function @receive can receive all byte values except zero.
If software handshaking is on, bytes with the values 17 (0x11,
Ctrl-Q), 19 (0x13, Ctrl-S) and zero cannot be received either,
as these are the XON & XOFF characters. The function @re-

ceivebyte allows to receive all bytes, including the zero byte.
Note that software handshaking should still be turned off for
receiving bytes with values 17 and 19.

If a script implements both this function and @receive, this
function is only called for the “zero” bytes. All bytes with other
values are collected in strings and passed through @receive.

Example: See the debugger support function on page 30.

See also: @receive, @receivepacket, sendbyte, sendstring, setse-
rial

@receivepacket A data packet is received from RS232

Syntax: @receivepacket(const packet[], numbytes)

packet The data received.

numbytes The number of elements in the packet.

Returns: The return value of this function is currently ignored.

Notes: This function will only receive packets after a packet filter has
been set up. Software handshaking should be turned off for
receiving bytes with values 17 and 19 in a packet.

See also: @receive, @receivebyte, packetfilter, setserial

@sample � 35

@reset Script entry point

Syntax: @reset()

Returns: The return value of this function is currently ignored.

Notes: On power-up or on reset of the device, this is the first func-
tion that is called. This function is therefore appropriate to
initialize the settings needed for the script and other call-back
functions.

Function main is an alternative name for the same function
—you can use either @reset or main in a script, but not both.

After starting a new script with exec, the new script also starts
with the @reset function.

See also: exec

@sample A burst of samples arrived

Syntax: @sample(const Fixed:stamps[], numsamples)

stamps An array containing time-stamps in milliseconds.
As the values are in fixed-point format with three
decimals, the time-stamps have a resolution of a
microsecond.

numsamples The number of time-stamps in parameter stamps

Returns: The return value of this function is currently ignored.

Notes: After a pin has been set up for sampling (see configiopin,
the MP3 player starts sampling data as soon as the state of
that input pin changes, either from high to low, or from low
to high. What it passes to the @sample() function are only
the time-stamps of these changes, not whether they go up or
down. However, you only need to know the direction of the
first state change; since each time-stamp signals a toggle of
the pin level, you can derive the pin level at any moment in
time from the initial state. For the H0420 MP3 player, the
initial state is defined as “high”, so the first state change that

36 � @synch

is recorded is a transition from high-level to low-level. This
occurs at time-stamp zero, because this change also starts the
sampling and all subsequent time-stamps are relative to the
start.

As it is always present, the zero time-stamp that starts the
sampling is not in the stamps array passed to the function.
That is, when the first element in the stamps array is 1.000,
the signal at the input pin is low between 0.000 ms and 1.000
ms (relative to the start of the sampling); at 1.000 ms, the
signal toggled high.

If the pin is low-level at rest and the first change of the pin
goes high, the stamps array contains a zero time-stamp as its
first element —i.e. stamps[0] is 0.000 in this case.

See also: configiopin

@synch Synchronized lyrics/cue arrived

Syntax: @synch(const event[])

event The text of the synchronized event, as read from
the ID3 tag.

Returns: The return value of this function is currently ignored.

Notes: The buffer for storing synchronized events is shared with the
buffer for the script. When the script is large, less memory
is available for storing the events. See the section “Reducing
memory requirements” on page 25 for details.

Example: See sylt.p on page 8

See also: play

@timer � 37

@timer A timer event occurred

Syntax: @timer()

Returns: The return value of this function is currently ignored.

Notes: This function executes after the delay/interval set with set-

timer. Depending on the timing precision of the host, the call
may occur later than the delay that was set.

If the timer was set as a “single-shot”, it must be explicitly
set again for a next execution for the @timer function. If the
timer is set to be repetitive, @timer will continue to be called
with the set interval until it is disabled with another call to
settimer.

See also: delay, settimer

38

Native functions

audiostatus Get the current audio status

Syntax: AudioStat: audiostatus()

Returns: One of the following values:

Stopped (0) The audio is stopped.

Paused (1) The audio is paused and can be resumed.

Playing (2) The audio is currently playing.

Notes: This function always returns the active status; it does not rely
on the presence of the event function @audiostatus.

Example: See mp3info.p on page 11.

See also: @audiostatus

bass Tone adjust (bass)

Syntax: bass(gain, frequency=200)

gain The gain in the range −12 to +12. Each step is
in 1.5 dB (so the range of gain is −18. . .+18 dB.

frequency The frequency at which the attenuation/enhan-
cement starts. The suggested range is 50 Hz to
750 Hz; a typical value is 200 Hz. This parameter
is clamped between 20 Hz and 1000 Hz.

Returns: true on success, false on failure.

Notes: The volume level is downward adjusted to allow for the max-
imum enhancement of bass or treble, while avoiding clipping.
That is, when enhancing bass frequencies, the overall volume
may decrease.

See also: setvolume, treble

channelselect � 39

button Read the status of a button

Syntax: button(pin)

pin The switch number, between 0 and 15; or -1 to
read the state of all 16 switches as a bit mask.

Returns: If parameter pin is in the range 0. . .15, the return value is the
status of the specified switch: 1 if the switch is down and 0
if the switch is up. If parameter pin is -1, the return value
is a value where the first 16 bits represent the state of the
respective switches.

See also: @button, getiopin

channelselect Set mono/stereo, or invert channels

Syntax: channelselect(ChannelType: code=Stereo)

Code The channel, one of the following:

Stereo (0)
Stereo: left channel on left output and
right channel on right output.

LeftChannel (1)
Left channel on both outputs.

RightChannel (2)
Right channel on both outputs.

Inverted (3)
Inverted stereo (left channel on right
output and vice versa).

Returns: true on success, false on failure.

Notes: To adjust the balance between the channels, use the function
setvolume.

See also: setvolume

40 � clearioqueue

clearioqueue Remove switch or input events from the queue

Syntax: clearioqueue(queue=3)

queue The queue to clear: set to 1 to clear the queue
for the switch events, to 2 to clear the queue for
I/O pin state changes, and to 3 to clear both
queues.

Returns: This function always returns 0.

Notes: During lengthy processing (by the script), any switch (button)
or I/O events are queued. These events will then be handled as
soon as the lengthy processing terminates. If this is undesired,
the script may clear either queue (or both). immediately after
finishing the process. All events that have happened in the
mean time will then have been “forgotten”.

See also: @button, @input

clamp Force a value inside a range

Syntax: clamp(value, min=cellmin, max=cellmax)

value The value to force in a range.

min The low bound of the range.

max The high bound of the range.

Returns: value if it is in the range min – max; min if value is lower than
min; and max if value is higher than max.

See also: max, min

configiopin � 41

clreol Clear up to the end of the line

Syntax: clreol()

Returns: Always returns 0.

Notes: Clears the line on the LCD from the position of the cursor to
the right margin of the console. This function does not move
the cursor.

The LCD must be configured with function console before
calling this function.

See also: clrscr, console

clrscr Clear the LCD

Syntax: clrscr()

Returns: Always returns 0.

Notes: Clears the console and sets the cursor in the upper left corner.

The LCD must be configured with function console before
calling this function.

See also: clreol, console

configiopin Configure an I/O pin

Syntax: configiopin(pin, PinConfig: type, timeout=0)

pin The pin number, between 0 and 15.

type The type, one of the following:

Output (0)
The pin is configured as output, and it
can be set with setiopin.

42 � configiopin

Input (1)
The pin is configured as input and it
can be read with getiopin; a change
of the pin also invokes public function
@input.

Sample (2)
The pin is configured as input and for
collecting time-stamped data; when a
change of the value of the pin is de-
tected, all subsequent changes of the
pin within the configured time-out are
passed to the public function @sample,
with precision time-stamps.

timeout This parameter is relevant only when the pin
type is Sample; it indicates the duration of the
sampling period, in milliseconds, starting from
the first detected change in the level of the pin.

Returns: This function always returns 0.

Notes: After reset, all pins are configured as inputs (high-impedance).

When an LCD is configured, pins 0 to 10 are unavailable. See
function console for configuring an LCD.

When configured as outputs, the pins can drive a LED or an
opto-coupler directly (no intermediate “driver” IC is required).

Only a single pin may be configured as type Sample. The
sampling period starts as soon as the logic level of the specified
pin changes (low to high or high to low), and it has a duration
specified in the timeout parameter.

Example: See switches2.p on page 3 and sylt.p on page 8.

See also: @input, @sample, console, getiopin, setiopin

consctrl � 43

consctrl Adjust console settings

Syntax: consctrl(code, value)

code The parameter to change, one of the following:
0 Console support check: parameter value is

ignored; the return value is always 1 (the
hardware is unable to verify whether a dis-
play is attached to the LCD connector).

1 Auto-wrap: if the value is 1 (the default),
text wraps from the right margin of the dis-
play to the next line; if zero, text is cut off at
the right margin.

2 Buffer swap: not supported.
3 Bold font: not supported.
4 Console “initialized” check: the return value

is 1 if the display is initialized and 0 other-
wise.

5 Reserved.
6 Wait for “busy” flag of the display: on slow

displays, it may be required to wait for the
signal of the display that it is ready for new
commands. Most displays, though, accept
commands at the speed that the controller
sends them, and the check for the busy flag
is superfluous.

7 Inverse video: if supported by the display,
setting this value to 1 inverts the foreground
and background on the display.

8 Display-dependent configuration: this option
selects a hardware configuration that is ap-
propriate for the display and its wiring.

value The new value for the console parameter.

Returns: The return value depends on the value of code.

Notes: The LCD must be configured with function console before
calling this function.

See also: console, setattr

44 � console

console Initialize the LCD

Syntax: console(columns, rows,

LCDcursor: cursor=CursorNone)

columns For a character display, the number of columns
on the LCD, typically 16, 20 or 40. For a graphic
display, the number of pixels horizontally.

rows For a character display, the number of rows on
the LCD, typically 1, 2 or 4. For a graphic dis-
play, the number of pixels vertically.

cursor The cursor type, one of the following:

CursorNone No cursor at all, this is the de-
fault.

CursorStable A non-blinking cursor.

CursorBlink A blinking cursor.

Graphic LCDs typically do not support a cur-
sor. If the display does not support a cursor,
this parameter is ignored.

Returns: Always returns 0.

Notes: This function initializes the LCD, and configures the I/O pins
0–10 accordingly. It sets the LCD contrast to a default setting
that is suitable for most standard LCDs. If you use a display
that requires a non-standard contrast tension, you should ad-
just it with function setattr. In particular, PLED and OLED
modules often need a high contrast setting.

When the display is a graphic LCD or OLED, additional con-
figuration settings (with function consctrl) may be needed.
A graphic LCD may also use additional I/O pins, specifically
pins 11 and 12.

Noritake graphical VFDs of the 7800 series are a special case:
these displays are compatible with the character LCD modules
(i.e. they emulate the HD44780 command set), but they also
provide graphical commands. To use a VFD, you must set it
up with character column and row numbers, like a character

delay � 45

LCD. However, you can still use the image function on a VFD
to display graphical data.

Example: See mp3info.p on page 11.

See also: consctrl, image, print, printf, setattr

cvttimestamp Convert a timestamp into a date and time

Syntax: cvttimestamp(seconds1970, &year=0, &month=0,

&day=0, &hour=0, &minute=0, &second=0)

year This will hold the year upon return.

month This will hold the month (1–12) upon return.

day This will hold the day of (1–31) the month upon
return.

hour This will hold the hour (0–23) upon return.

minute This will hold the minute (0–59) upon return.

second This will hold the second (0–59) upon return.

Returns: This function always returns 0.

Notes: Some file and system functions return timestamps as the num-
ber of seconds since midnight, 1 January 1970, which is the
start of the unix system epoch. This function allows to con-
vert these time stamps into date and time fields.

See also: gettime, getdate, settimestamp

delay Halts execution a number of milliseconds

Syntax: delay(milliseconds)

milliseconds

The delay, in milliseconds.

Returns: This function currently always returns zero.

46 � deletecfg

Notes: On some platforms, the sleep instruction also delays for a
given number of milliseconds. The difference between the
sleep instruction and the delay function is that the delay

function does not yield events and the sleep instruction typ-
ically yields. When yielding events is, any pending events are
handled. As a result, the delay function waits without han-
dling any pending events and the sleep instruction waits and
deals with events.

See also: tickcount

deletecfg Deletes a key or a section from an INI file

Syntax: bool: deletecfg(const filename[]="", const

section[]="", const key[]="")

filename The name and path of the INI file. If this pa-
rameter is not set, the function uses the default
name “config.ini”.

section The section from which to delete the key under.
If this parameter is not set, the function stores
the key/value pair outside any section.

key The key to delete. If this parameter is not set,
the function deletes the entire section.

Returns: true on success, false on failure.

Notes: If both section and key are not set, the function deletes all
keys that are outside any sections.

See also: readcfg, writecfg

fattrib � 47

exec Chain to another script

Syntax: bool: exec(const filename[])

filename The full name of the new script, including the
extension and path.

Returns: false if there was an error in loading of the script, or if its
validation failed. If the function succeeds, it will not return,
but instead start the new script.

See also: @reset

fabs Return the absolute value of a fixed point number

Syntax: Fixed: fabs(Fixed: value)

value The value to return the absolute value of.

Returns: The absolute value of the parameter.

fattrib Set the file attributes

Syntax: bool: fattrib(const name[], timestamp=0, at-

trib=0x0f)

name The name of the file.

timestamp Time of the last modification of the file. When
this parameter is set to zero, the time stamp of
the file is not changed.

attrib A bit mask with the new attributes of the file.
When set to 0x0f, the attributes of the file are
not changed.

Returns: true on success and false on failure.

48 � fblockread

Notes: The time is in number of seconds since midnight at 1 January
1970: the start of the unix system epoch.

The file attributes are a bit mask. The meaning of each bit
depends on the underlying file system (e.g. FAT, NTFS, etx2
and others).

See also: fstat

fblockread Read an array from a file, without interpreting the data

Syntax: fblockread(File: handle, buffer[],

size=sizeof buffer)

handle The handle to an open file.

buffer The buffer to read the data into.

size The number of cells to read from the file. This
value should not exceed the size of the buffer

parameter.

Returns: The number of cells read from the file. This number may be
zero if the end of file has been reached.

Notes: This function reads an array from the file, without encoding
and ignoring line termination characters, i.e. in binary format.
The number of bytes to read must be passed explicitly with
the size parameter.

See also: fblockwrite, fopen, fread

fblockwrite Write an array to a file, without interpreting the data

Syntax: fblockwrite(File: handle, const buffer[],

size=sizeof buffer)

handle The handle to an open file.

buffer The buffer that contains the data to write to the
file.

fcopy � 49

size The number of cells to write to the file. This
value should not exceed the size of the buffer

parameter.

Returns: The number of cells written to the file.

Notes: This function writes an array to the file, without encoding, i.e.
in binary format. The buffer need not be zero-terminated, and
a zero cell does not indicate the end of the buffer.

See also: fblockread, fopen, fwrite

fclose Close an open file

Syntax: bool: fclose(File: handle)

handle The handle to an open file.

Returns: true on success and false on failure.

See also: fopen

fcopy Copy a file

Syntax: bool: fcopy(const source[], const target[])

source The name of the (existing) file that must be
copied, optionally including a full path.

target The name of the new file, optionally including a
full path.

Returns: true on success and false on failure.

Notes: If the target file already exists, it is overwritten.

See also: frename

50 � fdiv

fdiv Divide a fixed point number

Syntax: Fixed: fdiv(Fixed: oper1, Fixed: oper2)

oper1 The numerator of the quotient.

oper2 The denominator of the quotient.

Returns: The result: oper1/oper2.

Notes: The user-defined / operator forwards to this function.

See also: fmul

fexist Count matching files, check file existence

Syntax: fexist(const pattern[])

pattern The name of the file, optionally containing wild-
card characters.

Returns: The number of files that match the pattern

Notes: In the pattern, the characters “?” and “*” are wild-cards: “?”
matches any character —but only exactly one character, and
“*” matches zero or more characters. Only the final part of
the path (the portion behind the last slash or backslash) may
contain wild-cards; the names of the directories must be fully
specified.

If no wild-cards are present, the function returns 1 if the file
exists and 0 if the file cannot be found. As such, you can use
the function to verify whether a file exists.

See also: fmatch

filecrc � 51

ffract Return the fractional part of a number

Syntax: Fixed: ffract(Fixed: value)

value The number to extract the fractional part of.

Returns: The fractional part of the parameter, in fixed point format. For
example, if the input value is “3.14”, ffract returns “0.14”.

See also: fround

fgetchar Read a single character (byte)

Syntax: fgetchar(File: handle)

handle The handle to an open file.

Returns: The character that was read, or EOF on failure.

See also: fopen, fputchar

filecrc Return the 32-bit CRC value of a file

Syntax: filecrc(const name[])

name The name of the file.

Returns: The 32-bit CRC value of the file, or zero if the file cannot be
opened.

Notes: The CRC value is a useful measure to check whether the con-
tents of a file has changed during transmission or whether it
has been edited (provided that the CRC value of the original
file was saved). The CRC value returned by this function is
the same as the one used in ZIP archives (PKZip, WinZip) and
the “SFV” utilities and file formats.

See also: fstat

52 � fixed

fixed Convert integer to fixed point

Syntax: Fixed: fixed(value)

value the input value.

Returns: A fixed point number with the same (integral) value as the
parameter (provided that the integral value is in range).

See also: fround, strfixed

flength Return the length of an open file

Syntax: flength(File: handle)

handle The handle to an open file.

Returns: The length of the file, in bytes.

See also: fopen, fstat

fmatch Find a filename matching a pattern

Syntax: bool: fmatch(name[], const pattern[], index=0,

maxlength=sizeof name)

name If the function is successful, this parameter will
hold a nth filename matching the pattern. The
name is always returned as a packed string.

pattern The name of the file, optionally containing wild-
card characters.

index The number of the file in case there are multiple
files matching the pattern. Setting this parame-
ter to 0 returns the first matching file, setting it
to 1 returns the second matching file, etc.

size The maximum size of parameter name in cells.

Returns: true on success and false on failure.

fmul � 53

Notes: In the pattern, the characters “?” and “*” are wild-cards: “?”
matches any character —but only exactly one character, and
“*” matches zero or more characters. Only the final part of
the path (the portion behind the last slash or backslash) may
contain wild-cards; the names of the directories must be fully
specified.

The name that is returned in parameter name always contains
the full path to the file, starting from the root.

See also: fexist

fmkdir Create a directory

Syntax: bool: fmkdir(const name[])

name The name of the directory to create, optionally
including a full path.

Returns: true on success and false on failure.

Notes: To delete the directory again, use fremove. The directory
must be empty before it can be removed.

See also: fremove

fmul Multiply two fixed point numbers

Syntax: Fixed: fmul(Fixed: oper1, Fixed: oper2)

oper1

oper2 The two operands to multiply.

Returns: The result: oper1 × oper2.

Notes: The user-defined * operator forwards to this function.

See also: fdiv

54 � fmuldiv

fmuldiv Fixed point multiply followed by a divide

Syntax: Fixed: fmuldiv(Fixed: oper1, Fixed: oper2,

Fixed: divisor)

oper1

oper2 The two operands to multiply (before the di-
vide).

divisor The value to divide oper1 × oper2 by.

Returns: The result: oper1×oper2
divisor

.

Notes: This function multiplies two fixed point numbers, then divides
it by a third number (“divisor”). It avoids rounding the
intermediate result (the multiplication) to a fixed number of
decimals halfway. Therefore, the result of fmuldiv(a, b, c)

may have higher precision than “(a * b) / c”.

See also: fdiv, fmul

fopen Open a file for reading or writing

Syntax: File: fopen(const name[],

filemode: mode=io readwrite)

name The name of the file, including the path.

mode The intended operations on the file. It must be
one of the following constants:

io read

opens an existing file for reading only
(the file must already exist)

io write

creates a new file (or truncates an ex-
isting file) and opens it for writing only

io readwrite

opens a file for both reading and writ-
ing; if the file does not exist, a new file
is created

fputchar � 55

io append

opens a file for writing only, where all
(new) information is appended behind
the existing contents of the file; if the
file does not exist, a new file is created

Returns: A “handle” or “magic cookie” that refers to the file. If the
return value is zero, the function failed to open the file.

Notes:

See also: fclose

fpower Raise a fixed point number to a power

Syntax: Fixed: fpower(Fixed: value, exponent)

value The value to raise to a power; this is a fixed point
number.

exponent The exponent is a whole number (integer). The
exponent may be zero or negative.

Returns: The result: valueexponent; this is a fixed point value.

Notes: For exponents higher than 2 and fractional values, the fpower
function may have higher precision than repeated multiplica-
tion, because the function tries to calculate with an extra digit.
That is, the result of fpower(3.142, 4) is probably more ac-
curate than 3.142 * 3.142 * 3.142 * 3.142.

See also: fsqroot

fputchar Write a single character to the file

Syntax: bool: fputchar(File: handle, value)

handle The handle to an open file.

value The value to write (as a single character) to the
file.

Returns: true on success and false on failure.

56 � fread

Notes:

Notes: The function writes a single byte to the file; values above 255
are not supported.

See also: fgetchar, fopen

fread Reads a line from a text file

Syntax: fread(File: handle, string[], size=sizeof string,

bool: pack=false)

handle The handle to an open file.

string The array to store the data in; this is assumed
to be a text string.

size The (maximum) size of the array in cells. For a
packed string, one cell holds multiple characters.

pack If the pack parameter is false, the text is stored
as an unpacked string; otherwise a packed string
is returned.

Returns: The number of characters read. If the end of file is reached,
the return value is zero.

Notes: Reads a line of text, terminated by cr, lf or cr–lf characters,
from to the file. Any line termination characters are stored in
the string.

See also: fblockread, fopen, fwrite

fremove Delete a file or directory

Syntax: bool: fremove(const name[])

name The name of the file or the directory.

Returns: true on success and false on failure.

Notes: A directory can only be removed if it is empty.

See also: fmkdir, fexist, fopen

fround � 57

frename Rename a file

Syntax: bool: frename(const oldname[], const newname[])

oldname The current name of the file, optionally including
a full path.

newname The new name of the file, optionally including a
full path.

Returns: true on success and false on failure.

Notes: In addition to changing the name of the file, this function can
also move the file to a different directory.

See also: fcopy, fremove

fround Round a fixed point number to an integer value

Syntax: fround(Fixed: value,

fround method: method=fround round)

value The value to round.

method The rounding method may be one of:
fround round

round to the nearest integer; a fractional
part of exactly 0.5 rounds upwards (this
is the default);

fround floor

round downwards;
fround ceil

round upwards;
fround tozero

round downwards for positive values and
upwards for negative values (“truncate”);

fround unbiased

round to the nearest even integer num-
ber when the fractional part is exactly 0.5
(the values “1.5” and “2.5” both round
to “2”). This is also known as “Banker’s
rounding”.

58 � fseek

Returns: The rounded value, as an integer (an untagged cell).

Notes: When rounding negative values upwards or downwards, note
that −2 is considered smaller than −1.

See also: ffract

fseek Set the current position in a file

Syntax: fseek(File: handle, position=0,

seek whence: whence=seek start)

handle The handle to an open file.

position The new position in the file, relative to the pa-
rameter whence.

whence The starting position to which parameter posi-
tion relates. It must be one of the following:

seek start Set the file position relative to
the start of the file (the posi-
tion parameter must be posi-
tive);

seek current Set the file position relative to
the current file position: the
position parameter is added
to the current position;

seek end Set the file position relative to
the end of the file (parameter
position must be zero or neg-
ative).

Returns: The new position, relative to the start of the file.

Notes: You can either seek forward or backward through the file.

To get the current file position without changing it, set the
position parameter to zero and whence to seek_current.

See also: fopen

fstat � 59

fsqroot Return the square root of a value

Syntax: Fixed: fsqroot(Fixed: value)

value The value to calculate the square root of.

Returns: The result: the square root of the input number.

Notes: This function raises a “domain” error is the input value is
negative.

See also: fpower

fstat Return the size and the time stamp of a file

Syntax: bool: fstat(const name[], &size=0, ×tamp=0,

&attrib=0, &inode=0)

name The name of the file.

size If the function is successful, this parameter holds
the size of the file on return.

timestamp If the function is successful, this parameter holds
the time of the last modification of the file on
return.

attrib If the function is successful, this parameter holds
the file attributes.

inode If the function is successful, this parameter holds
inode number of the file. An inode number is a
number that uniquely identifies a file, and it usu-
ally indicates the physical position of (the start
of) the file on the disk or memory card.

Returns: true on success and false on failure.

60 � funcidx

Notes: In contrast to the function flength, this function does not
need the file to be opened for querying its size.

The time is in number of seconds since midnight at 1 January
1970: the start of the unix system epoch.

The file attributes are a bit mask. The meaning of each bit
depends on the underlying file system (e.g. FAT, NTFS, etx2
and others).

The inode number is useful for minimizing the gap between
tracks when playing MP3 tracks sequentially. By storing the
inode number and the file size of the next track in a “resource
id” (while the H04x0 MP3 controller is still playing the cur-
rent track), you avoid the time needed to search through the
directory system of the FAT file system. See function play for
details on resource ids.

See also: fattrib, flength

funcidx Return a public function index

Syntax: funcidx(const name[])

Returns: The index of the named public function. If no public function
with the given name exists, funcidx returns −1.

Notes: A host application runs a public function from the script by
amx Exec: see the

“Implementer’s

Guide”

passing the public function’s index to amx_Exec. With this
function, the script can query the index of a public function,
and thereby return the “next function to call” to the applica-
tion.

fwrite Write a string to a file

Syntax: fwrite(File: handle, const string[])

handle The handle to an open file.

string The string to write to the file.

getdate � 61

Returns: The number of characters actually written; this may be a dif-
ferent value from the string length in case of a writing failure
(“disk full”, or quota exceeded).

Notes:

The function does not append line-ending characters to the
line of text written to the file (line ending characters are cr,
lf or cr–lf characters).

See also: fblockwrite, fopen, fread

getarg Get an argument

Syntax: getarg(arg, index=0)

arg The argument sequence number, use 0 for first
argument.

index The index, in case arg refers to an array.

Returns: The value of the argument.

Notes: This function retrieves an argument from a variable argument
list. When the argument is an array, the index parameter
specifies the index into the array. The return value is the
retrieved argument.

See also: numargs, setarg

getdate Return the current (local) date

Syntax: getdate(&year=0, &month=0, &day=0)

year This will hold the year upon return.

month This will hold the month (1–12) upon return.

day This will hold the day of (1–31) the month upon
return.

Returns: The return value is the number of days since the start of the
year. January 1 is day 1 of the year.

See also: gettime, setdate

62 � getiopin

getiopin Read the indicated I/O pin

Syntax: getiopin(pin)

pin The pin number, between 0 and 15; or -1 to read
the state of all 16 digital I/O pins as a bit mask.

Returns: If parameter pin is in the range 0. . .15, the return value is
the logical value of the specified I/O pin: 0 or 1. If parameter
pin is -1, the return value is a value where the first 16 bits
represent the state of the respective I/O pins.

Notes: When a pin is defined as output, its latched value (usually the
last value that the pin was set to) is returned. Pins that are
reserved (for the LCD) always read back as zero. See function
configiopin for configuring pins. After reset, all pins are
configured as inputs (high-impedance).

This function always returns the current logical level of the pin,
regardless of whether the public function @input is defined.

See also: @input, @button, configiopin, @console, setiopin

gettime Return the current (local) time

Syntax: gettime(&hour=0, &minute=0, &second=0)

hour This will hold the hour (0–23) upon return.

minute This will hold the minute (0–59) upon return.

second This will hold the second (0–59) upon return.

Returns: The return value is the number of seconds since midnight, 1
January 1970: the start of the unix system epoch.

See also: getdate, settime

headerinfo � 63

getvolume Read the current volume and balance settings

Syntax: getvolume(&volume=0, &balance=0)

volume This (optional) parameter will hold the volume
setting upon return. This is a value in the range
0–100.

balance This (optional) parameter will hold the balance
setting upon return. This is a value in the range
−100–100.

Returns: This function always returns true if a volume fade is currently
in progress, and false if no fade was started or the fade has
finished.

Notes: If the output channels are muted, the original volume settings
will still be returned.

See also: bass, setvolume, treble

gotoxy Set the cursor position

Syntax: gotoxy(x=1, y=1)

x The horizontal position to move the cursor to.

y The vertical position to move the cursor to.

Returns: Always returns 0.

Notes: The upper left corner is at (1,1).

See also: wherexy

headerinfo Read frame header values

Syntax: headerinfo(MP3Value: code)

code The item from the frame header to read. One of
the following:

64 � headerinfo

MP3 ID (0)
MP3 file format version, see the notes
below.

MP3 Layer (1)
MP3 file format layer.

MP3 Bitrate (2)
The bit rate of the current frame, in
kb/s.

MP3 SampleFreq (3)
The sample frequency in Hz.

MP3 Mode (4)
The audio mode (mono, stereo, . . .),
see the notes below.

MP3 AvgBitrate (5)
The average bit rate as determined by
the decoder, in kb/s.

MP3 Length (7)
The track duration in milliseconds.

Returns: The value of the requested item.

Notes: The “ID” of the MP3 header gives the version of the format.
This is one of the following values:
ID MPEG 2 5 (0) unofficial MPEG 2.5 extension (very low bit

rates)
ID MPEG 2 (2) MPEG version 2
ID MPEG 1 (3) MPEG version 1

The “Layer” field indicates the layer of the format, which is a
kind of “sub-version” —it is the “3” in the “MP3” identifier.
The most common file type is MPEG version 1, layer 3, but
versions 2 and 2.5 are supported too. The H0420 does not
support layers 1 or 2.

An MPEG file consists of independent chunks, called “frames”.
Each frame has a frame header with the above information.
Due to the frames being independent, changes in bit rate, or
even sampling frequency, in the middle of a track are han-
dled transparently. See the section “Resources” on page 112
for pointers to in-depth information on the MPEG audio file
format.

heapspace � 65

The mode of a frame is one of the following values:
MODE Stereo (0) standard stereo
MODE JointStereo (1) single channel plus delta-signal (for

the other channel)
MODE DualChannel (2) two independent channels (e.g. two

languages)
MODE Mono (3) monaural sound

The average bit rate returned by this function is a average
of the bit rates of the most recent MP3 frames that the audio
processor on the H0420 has seen —it is not the average bit rate
of the entire track. In a “constant bit rate” file, the average
bit rate will be constant and have the same value as the bit
rate of every frame. In a “variable bit rate” file, the bit rate of
every frame may change and the average bit rate will smooth
out these variations somewhat. The average bit rate will still
fluctuate, however.

The duration of the track can be read from the header infor-
mation as well as from the ID3 tag (see function taginfo).
However, the length field is usually not present in the ID3 tag.
The track duration can only be reliably calculated by this func-
tion for “variable bit rate” tracks (VBR) that have a “Xing”
header, and for “constant bit rate” tracks (CBR). Some en-
coders create variable bit rate tracks without Xing header.

Example: See mp3info.p on page 11.

See also: taginfo

heapspace Return free heap space

Syntax: heapspace()

Returns: The free space on the heap. The stack and the heap occupy
a shared memory area, so this value indicates the number of
bytes that is left for either the stack or the heap.

Notes: In absence of recursion, the pawn parser can also give an esti-
mate of the required stack/heap space.

66 � image

image Display an image

Syntax: image(const filename[], x=0, y=0)

filename The full name and path to the image file. See
the notes for the supported image file format.

x, y The position in pixels for the upper left corner of
the image. Depending on the display, the image
may need to be aligned to a particular raster.

Returns: Always returns 0.

Notes: The image must be in “poly-raster image” format and be for-
matted for the appropriate display (LCD, VFD or other). For
utilities to convert images to poly-raster format and a descrip-
tion of the format, see http://www.compuphase.com.

The display (LCD) must be configured with function console

before calling this function. The display must furthermore
support graphic operations.

See also: consctrl, console, print, printf

inputlapse Get precision time stamp of an I/O event

Syntax: Fixed: inputlapse(Fixed: basestamp=0.0)

basestamp The time stamp relative to which the returned
value will be. This value is in units of 1 millisec-
ond.

Returns: The interval in milliseconds between the most recent change
on one of the I/O lines since the time stamp in basestamp

Notes: Because the values for the parameter basestamp and the func-
tion result have three decimal digits, the resolution of the
timestamps are 1 microsecond.

The function returns the time interval between basestamp and
the most recent change on any input pin. If multiple pins are
configured as input, the return value be refer to a change on
every pin.

memcpy � 67

See also: @input

ispacked Determine whether a string is packed or unpacked

Syntax: bool: ispacked(const string[])

string The string to verify the packed/unpacked status
for.

Returns: true if the parameter refers to a packed string, and false

otherwise.

max Return the highest of two numbers

Syntax: max(value1, value2)

value1

value2 The two values for which to find the highest num-
ber.

Returns: The higher value of value1 and value2.

See also: clamp, min

memcpy Copy bytes from one location to another

Syntax: memcpy(dest[], const source[], index=0, numbytes,

maxlength=sizeof dest)

dest An array into which the bytes from source are
copied in.

source The source array.

index The index, in bytes in the source array starting
from which the data should be copied.

numbytes The number of bytes (not cells) to copy.

maxlength The maximum number of cells that fit in the
destination buffer.

68 � min

Returns: true on success, false on failure.

Notes: This function can align byte strings in cell arrays, or concate-
nate two byte strings in two arrays. The parameter index is a
byte offset and numbytes is the number of bytes to copy.

This function allows copying in-place, for aligning a byte region
inside a cell array.

Endian issues (for multi-byte values in the data stream) are
not handled.

See also: strcopy, strpack, strunpack, uudecode, uuencode

min Return the lowest of two numbers

Syntax: min(value1, value2)

value1

value2 The two values for which to find the lowest num-
ber.

Returns: The lower value of value1 and value2.

See also: clamp, max

mp3password Set the user password for encrypted tracks

Syntax: mp3password(const password[])

password A string containing your “user password” to use
for the encrypted MP3 tracks.

Returns: This function currently always returns 0.

mute � 69

Notes: This function sets the “user password” for deciphering en-
crypted MP3 tracks. The user password must match the pass-
word that was used for encrypting the MP3 track. If the track
was encrypted without user password, the password parame-
ter should be an empty string.

The encryption algorithm uses both an internal, device-specific
128-bit “system key” and the user password to protect MP3
tracks. The user password is therefore an augmented protec-
tion. Even if the password “leaks out”, the MP3 files can still
only be played back on a hardware player with the appropriate
system key. The system key is embedded in the firmware in
a way that it cannot be read from the device even if a code
breaker has full access to the device.

Unencrypted MP3 tracks will still play as before. Setting a
user password has only effect on encrypted MP3 tracks.

mute Mute or unmute the audio

Syntax: mute(bool: on)

on Set to true to silence the audio, or false to
return to the previously set volume.

Returns: This function always returns 0.

Notes: This function does not change the volume and balance setting.
When “unmuting”, the device returns to the previously set
volume.

When starting to play a new track (function play), the audio
is unmuted implicitly.

See also: play, setvolume

70 � numargs

numargs Return the number of arguments

Syntax: numargs()

Returns: The number of arguments passed to a function; numargs is
useful inside functions with a variable argument list.

See also: getarg, setarg

packetfilter Filter received RS232 data

Syntax: packetfilter(const format[]=!"",

const filter[]=!"*", timeout=0)

format A string describing the format of the packets that
are (by reasonable assumption) received on the
RS232 line. The data is collected in an internal
buffer until a complete packet is received or until
the reception of the packet times out.

filter A string describing the contents of packets that
are acceptable. Any packet that does not match
the filter is rejected; i.e. the script will not re-
ceive a @receivepacket event for rejected pack-
ets. The default filter, a single asterisk (“*”)
matches any packet.

timeout The time in milliseconds to wait for a packet to
be completed. When a packet is incomplete and
no more data is received within this time period,
the packet is assumed invalid.

Returns: This function always returns 0.

pause � 71

Notes: The strings for the format and filter may contain the wild
card characters described for filename matching. See page 19
for details. A pattern may contain at most 64 characters (in-
cluding the zero byte that terminates the string). The maxi-
mum size of a packet is also 64 bytes.

When a packet is received and the packet matches the filter,
the script receives an @receivepacket event with the packet as
its parameter. This relieves the script from finding the packet
boundaries itself and do its filtering in the script.

Received bytes that do not form a valid packet (according to
the definition in the format parameter) are directed to the
event function @receivebyte. If the script does not con-
tain a @receivebyte function, the non-conforming bytes are
dropped. Any packets that matches the format, but fails the
filter is dropped, even if a @receivebyte function is present.

The serial port must have been set up (“opened”) before using
this function. If software handshaking is enabled (see function
setserial), bytes with the values 17 (0x11, Ctrl-Q), 19 (0x13,
Ctrl-S) will be handled internally, and these bytes are then not
received. These values denote the XON and XOFF signals.

See also: @receivepacket, setserial

pause Pauses playback

Syntax: pause(fadeout=250)

fadeout The time to use for fading out the audio when a
track is cut off by another, in milliseconds.

Returns: true on success, false on failure (no audio is currently play-
ing).

Notes: The function waits until the fade is complete.

See also: play, resume, stop

72 � play

play Start playing an audio file

Syntax: bool: play(const filename[], repeats=0,

fadeout=250, fadein=0)

filename The full filename and path of the file, or a re-
source id for the file. See the notes for the for-
mat of a resource id.
For firmware editions that include network sup-
port, the filename may also be an URL to a track
on a HTTP server or an URL to a streaming
server. See the function netstream in the net-
work functions addendum for details.

repeats The number of times that the audio segment
should be repeated. When set to zero (the de-
fault value), the audio file plays only once. When
set to 255, the audio file is repeated indefinitely
until it is explicitly stopped or until another file
is scheduled to play.

fadeout The time to use for fading out the audio when a
track is cut off by another, in milliseconds.

fadein The time to use for fading in an audio track as
it starts, in milliseconds.

Returns: true on success, false on failure (file not found or invalid
format).

Notes: Due to the format of “Layer 3” MPEG file, frames are not as
independent as the MPEG standard implies. When you start
playing a file while another file is already playing, an audible
glitch may occur when the “bit reservoir” belonging to the pre-
ceding track cannot be synchronized with the starting frames
of the new track. The only solution (apart from encoding the
MP3 files to not use the bit reservoir) is to suppress this au-
dible glitch with a fade-out. A fade in at the start of a track
is optional.

Note that the fadeout parameter is to fade out the track that
is playing before the new track starts. If the MP3 player is

print � 73

not playing a track at the time function play is called, the
parameter fadeout is ignored.

If the audio outputs were muted, the mute is turned off by the
play command.

Instead of a path and filename of an MP3 track, you can also
pass in a “resource id” of the track. The resource id is an array
with three values:
⋄ Array index 0 (the first cell of the array) must have the value
1.

⋄ Array index 1 must have the “inode” number of the file, see
fstat.

⋄ Array index 2 must have the size of the file in bytes (also
obtained with fstat).

The purpose of resource id’s is that looking up a track in the
directory structure may be a time-consuming operation if you
have many MP3 tracks on the card. With fstat, the script
can prepare the parameters of the next track to play and store
it in a resource id —all while the device is playing another
track. When that track ends, the script plays the resource id.
Since no more “looking up” is necessary, the prepared track
plays immediately. Thus, playing a resource id allows you to
minimize the gap between tracks.

Example: See mp3info.p on page 11 and serial.p on page 14.

See also: fstat, mute, stop

print Display a (partial) string

Syntax: print(const string[], start=0, end=cellmax)

string The string to display on the LCD.

start The character to start printing with (the number
of characters to skip at the start of the string).

end An index in the string behind the last character
that is printed. In other words, the number of
characters printed is end−start.

74 � printf

Returns: Always returns 0.

Notes: This function displays a plain string on the LCD, without in-
terpreting placeholders. Control characters are taken into ac-
count, though. By setting the optional parameters start and
end, you can also display part of a string.

The LCD must be configured with function console before
calling this function.

See also: console, image, printf

printf Display a formatted string

Syntax: printf(const format[], Fixed, :...)

format The string to display, which may contain place-
holders (see the notes below).

... The parameters for the placeholders. These val-
ues may be untagged, weakly tagged, or tagged
as “Fixed” point values.

Returns: Always returns 0.

Notes: Prints a string with embedded placeholder codes:

%c print a character at this position

%d print a number at this position in decimal radix

%q same a %r (for compatibility with other implementations
of pawn)

%r print a fixed point number at this position

%s print a character string at this position

%x print a number at this position in hexadecimal radix

readcfg � 75

The values for the placeholders follow as parameters in the
call.

You may optionally put a number between the “%” and the
letter of the placeholder code. This number indicates the field
width; if the size of the parameter to print at the position
of the placeholder is smaller than the field width, the field is
expanded with spaces.

The printf function works similarly to the printf function
of the C language.

The LCD must be configured with function console before
calling this function.

Example: See mp3info.p on page 11.

See also: console, image, print, strformat

random Return a pseudo-random number

Syntax: random(max)

max The limit for the random number.

Returns: A pseudo-random number in the range 0 – max-1.

Notes: The random-number generator is based on a cryptographical
function and it is considered to produce good quality pseudo-
random numbers. The generator chooses its own seed at each
power-up.

readcfg Reads a text field from an INI file

Syntax: readcfg(const filename[]="", const section[]="",

const key[], value[], size=sizeof value,

const defvalue[]="", bool: pack=true)

filename The name and path of the INI file. If this pa-
rameter is not set, the function uses the default
name “config.ini”.

76 � readcfgvalue

section The section to look for the key. If this parameter
is not set, the function reads the key outside any
section.

key The key whose value must be looked up.

value The buffer into which the field that is read is
stored into. If the key cannot be found in the
appropriate section of the INI file, this field will
contain the defvalue parameter upon return.

size The (maximum) size of the value array in cells.
For a packed string, one cell holds multiple char-
acters.

defvalue The string to copy into parameter value in case
that the function cannot read the field from the
INI file.

pack If the pack parameter is false, the text is stored
as an unpacked string; otherwise a packed string
is returned.

Returns: The number of characters stored in parameter value.

See also: readcfgvalue, writecfg

readcfgvalue Reads a numeric field from an INI file

Syntax: readcfgvalue(const filename[]="",

const section[]="", const key[],

defvalue=0)

filename The name and path of the INI file. If this pa-
rameter is not set, the function uses the default
name “config.ini”.

section The section to look for the key. If this parameter
is not set, the function reads the key outside any
section.

key The key whose value must be looked up.

receivebyte � 77

defvalue The value to return in case that the function
cannot read the field from the INI file.

Returns: The numeric value if the field, or the value of defvalue if the
field was not found in the section and/or at the key.

See also: readcfg, writecfgvalue

readconfig Read device configuration

Syntax: readconfig(data[], size=sizeof data)

data An array that will contain the data read from the
configuration area upon return of this function.

size The number of cells to read in the array. The
maximum size if 64 cells.

Returns: This function currently always returns 0.

Notes: The H04x0 series of MP3 controllers have an auxiliary non-
volatilememory area into which the script can store data. Typ-
ically, device configurations that should be saved even when
the CompactFlash card is exchanged, are stored in the config-
uration area. The data in the configuration area is saved even
when the power is removed.

See also: storeconfig

receivebyte Receive a single byte over the serial line

Syntax: receivebyte(timeout, port=1)

timeout The number of milliseconds to wait for data.
When this parameter is zero, the function re-
turns the first byte in the queue if one is present,
but does not wait if the queue is empty.

port For devices supporting multiple serial ports, this
parameter specifies which port to receive from.

78 � reset

Returns: The byte read on success, or a value less then zero on failure
(operation timed out).

Notes: The serial port must have been set up (“opened”) before using
this function.

If software handshaking is enabled (see function setserial),
bytes with the values 17 (0x11, Ctrl-Q), 19 (0x13, Ctrl-S) will
be handled internally, and these bytes are then not received.
These values denote the XON and XOFF signals.

See also: @receive, @receivebyte, sendbyte, setserial

reset Causes a full reset

Syntax: reset(bool: wait=true)

wait Whether to wait for the reset, which happens
in approximately 1.5 seconds after calling this
function. If true, the function does not return.
If false, the function returns immediately, giv-
ing the script a chance to complete an operation
before the reset occurs.

Returns: If parameter wait is true (or if the parameter is absent), the
function does not return. If parameter wait is false, the func-
tion returns 0.

Notes: When this function is called, the H0420 goes into a reset. This
also causes function @reset (in the script) to be invoked again.

The H0420 will poll for a debugger on the RS232 after a pro-
grammed reset, regardless of whether the script on the Com-
pact Flash card was built with debug information. If no debug-
ger is present, the polling causes a start-up delay of 2 seconds.

Example: See the debugger support function on page 30.

See also: @reset, standby

seekto � 79

resume Resumes playback that was paused earlier

Syntax: resume(fadein=0)

fadein The time to use for fading in an audio track as
it starts, in milliseconds.

Returns: true on success, false on failure (i.e. no audio is currently
paused).

Notes: The difference between resume and play is that resume will
resume playback from the position where the audio was paused
earlier; play will always start playing from the beginning of
the track.

See also: pause, play

seekto Set the position in the MP3 track

Syntax: seekto(milliseconds,fade=250)

milliseconds

The position to move to, in milliseconds from the
start of the track.

fade The time to use for fading out the audio track be-
fore changing its playback position, and to fade
it in when resuming the track. The fade time is
in milliseconds.

Returns: true on success, false on failure.

Notes: You must have started to play the track before you can seek
to a position.

See function headerinfo to get the duration of the track. To
get the current position into a playing track, you should obtain
a time stamp (function tickcount) and subtract from this the
time stamp at which the track started to play.

You cannot seek in encrypted tracks; function seekto will re-
turn failure if encryption is configured.

80 � sendbyte

Seeking to a position is accurate for “constant bit rate” tracks
(CBR); it is fairly accurate for “variable bit rate” tracks (VBR)
that have a “Xing” header. When a variable bit rate track
lacks a Xing header, the seekto function works, but the seek
position may be inaccurate.

See also: headerinfo, mp3password, play

sendbyte Send a single byte over the serial line

Syntax: sendbyte(value, port=1)

value The byte to send.

port For devices supporting multiple serial ports, this
parameter specifies which port to use.

Returns: true on success, false on failure.

Notes: The serial port must have been set up (“opened”) before using
this function.

To receive data from the serial port, the script must implement
either the @receive public function or the @receivebyte func-
tion. See page 33 for details. Alternatively, one may use the
receivebyte function to poll for serial input.

If software handshaking is enabled (see function setserial),
bytes with the values 17 (0x11, Ctrl-Q), 19 (0x13, Ctrl-S) can-
not be sent either, because these denote the XON and XOFF
signals. When you need to transfer binary data, you should
encode it using a protocol like UU-encode.

See also: @receive, receivebyte, sendstring, setserial

setalarm � 81

sendstring Send a string over the serial line

Syntax: sendstring(const string[], port=1)

string The string to send.

port For devices supporting multiple serial ports, this
parameter specifies which port to use.

Returns: true on success, false on failure.

Notes: The serial port must have been set up (“opened”) before using
this function.

To receive data from the serial port, the script must implement
either the @receive public function or the @receivebyte func-
tion. See page 33 for details. Alternatively, one may use the
receivebyte function to poll for serial input.

The maximum string length that can be sent with this function
is currently 256 characters.

If software handshaking is enabled (see function setserial),
bytes with the values 17 (0x11, Ctrl-Q), 19 (0x13, Ctrl-S) can-
not be sent either, because these denote the XON and XOFF
signals. When you need to transfer binary data, you should
encode it using a protocol like UU-encode.

Example: See serial.p on page 14.

See also: @receive, sendbyte, setserial

setalarm Set the timer alarm

Syntax: setalarm(year=-1, month=-1, day=-1, weekday=-1,

hour=-1, minute=-1, second=-1)

year The year to match for the alarm, or -1 for not
matching the year for the alarm. This value must
be in the range 1970–2099.

month The month to match for the alarm, or -1 for not
matching the month for the alarm. This value
must be in the range 1–12.

82 � setalarm

day The day to match for the alarm, or -1 for not
matching the day for the alarm. This value must
be in the range 1–31 (or the last valid day of the
month).

weekday The “day of the week” to match for the alarm,
or -1 for not matching the day of the week for
the alarm. This value must be in the range 1–7,
where Monday is day 1.

hour The hour to match for the alarm, or -1 for not
matching the hour for the alarm. This value
must be in the range 0–23.

minute The minute to match for the alarm, or -1 for not
matching the minute for the alarm. This value
must be in the range 0–59.

second The second to match for the alarm, or -1 for not
matching the second for the alarm. This value
must be in the range 0–59.

Returns: This function currently always returns 0.

Notes: This function sets the alarm to go off at a specific time. All
parameters of this function are optional, and you can switch
the alarm off by leaving all parameters at their default value
when calling the function.

The alarm may be fully specified, with a day, month and year
as well as a complete time with hour, minute and second. Such
a timer will only go off once. Another usage is to set an alarm
at a recurring event, such as every day at 7:15 o’clock. For this
purpose, one would set only the hour and minute parameters
(to 7 and 15 respectively) and leave the rest at −1.

The alarm function needs the current time and date to be set
in the H0420 accordingly. On a power-on, the device starts at
midnight 1 January 1970.

See also: @alarm, setdate, settime

setattr � 83

setarg Set an argument

Syntax: setarg(arg, index=0, value)

arg The argument sequence number, use 0 for first
argument.

index The index, in case arg refers to an array.

value The value to set the argument to.

Returns: true on success and false if the argument or the index are
invalid.

Notes: This function sets the value of an argument from a variable
argument list. When the argument is an array, the index

parameter specifies the index into the array.

See also: getarg, numargs

setattr Set LCD contrast

Syntax: setattr(contrast)

contrast The new contrast value; a value between 0 and
255. Suitable values are usually between 20 and
60 for LCDs and between 100 and 200 for OLED
or PLED modules.

Returns: Always returns 0.

Notes: The LCD must be configured with function console before
calling this function.

See also: consctrl, console

84 � setdate

setdate Set the system date

Syntax: setdate(year=cellmin, month=cellmin, day=cellmin)

year The year to set; if this parameter is kept at its
default value (“cellmin”) it is ignored.

month The month to set; if this parameter is kept at its
default value (“cellmin”) it is ignored.

day The month to set; if this parameter is kept at its
default value (“cellmin”) it is ignored.

Returns: This function always returns 0.

The date fields are kept in a valid range. For example, when
setting the month to 13, it wraps back to 1.

See also: getdate, settime, settimestamp

setiopin Set the indicated I/O pin

Syntax: setiopin(pin, status)

pin The pin number, between 0 and 16; or -1 to set
the status of all digital I/O pins using a bit mask
in status.

status The new status for the pin. This is a logical
value (0 or 1) for the digital pins 0. . .15 and a
value between 0 and 1023 for the analogue pin
16. If pin is -1, this parameter is interpreted as
a bit mask where the first 16 bits represent the
desired output state of pins 0. . .15.

Returns: The previous state of the pin; this may either be a logical value
(0 or 1) or a bit mask, depending on parameter pin.

setserial � 85

Notes: Only pins that are configured as outputs can be set; see the
function configiopin for configuring pins. After reset, all pins
are configured as inputs.

Pin 16 is an analogue pin. It is hard-wired as an output pin
and it cannot be read. If a wave generator has been set up on
pin 16, you should not set the pin to a value with setiopin.
The analogue pin is not available when an LCD is set up —but
see function setattr.

Example: See switches2.p on page 3 and sylt.p on page 8.

See also: configiopin, getiopin, wavegenerator

setserial Configure the serial port

Syntax: setserial(baud=57600, databits=8, stopbits=1,

parity=0, handshake=0, port=1)

baud The Baud rate, up to 115200. The standard
Baud rates are 1200, 2400, 4800, 9600, 14400,
19200, 28800, 38400, 57600 and 115200. The se-
rial port also supports non-standard Baud rates.
When this parameter is zero, the serial port is
closed.

databits The number of data bits, a value between 5 and
8.

stopbits The number of stop bits, 1 or 2.

parity The parity options, one of the following:
0 disable
1 odd
2 even
3 mark (force 1)
4 space (force 0)

handshake The handshaking options; 0 for no handshaking
and 1 for software handshaking.

port For devices supporting multiple serial ports, this
parameter specifies which port to set up.

86 � settime

Returns: true on success, false on failure.

Notes: Software handshaking uses the characters XOFF (ascii 19,
Ctrl-S) to request that the other side stops sending data and
XON (ascii 17, Ctrl-Q) to request that it resumes sending
data. These characters can therefore not be part of the normal
data stream (as they would be misinterpreted as control codes).

In a data transfer both sides must agree on the protocol. As
the settings are sometimes fixed on the apparatus that you
wish to attach to the H0420 player, the RS232 interface of the
H0420 is designed to fit a wide range of protocols.

The Baud rate is a trade-off between transfer speed and reli-
ability of the connection: in noisy environments or with long
cables, you may need to reduce the Baud rate.

The number of data bits is usually 8, occasionally 7 and rarely
6 or 5. With 8 databits, the number of stop bits is typically 1.

Mark and space parity codes are rarely used.

Example: See serial.p on page 14.

See also: @receive, @receivebyte, sendbyte, sendstring

settime Set the system time

Syntax: settime(hour=cellmin, minute=cellmin,

second=cellmin)

hour The hour to set, in the range 0–23; if this pa-
rameter is kept at its default value (“cellmin”)
it is ignored.

minute The minute to set, in the range 0–59; if this pa-
rameter is kept at its default value (“cellmin”)
it is ignored.

second The second to set, in the range 0–59; if this pa-
rameter is kept at its default value (“cellmin”)
it is ignored.

settimestamp � 87

Returns: This function always returns 0.

The time fields are kept in a valid range. For example, when
setting the hour to 24, it wraps back to 23.

See also: gettime, setdate, settimestamp

settimer Configure the event timer

Syntax: settimer(milliseconds, bool: singleshot=false)

milliseconds

The number of milliseconds to wait before call-
ing the @timer callback function. Of the timer
is repetitive, this is the interval. When this pa-
rameter is 0 (zero), the timer is shut off.

singleshot If false, the timer is a repetitive timer; if true
the timer is shut off after invoking the @timer

event once.

Returns: This function always returns 0.

Notes: See the chapter “Usage” for an example of this function, and
the @timer event function.

See also: @timer, tickcount

settimestamp Sets the date and time with a single value

Syntax: settimestamp(seconds1970)

seconds1970

The number of seconds that have elapsed since
midnight, 1 January 1970. This particular date,
1 January 1970, is the “unix system epoch”.

Returns: This function always returns 0.

Notes: The function getdate returns the number of seconds since 1
January 1970.

See also: getdate, setdate, settime

88 � setvolume

setvolume Set the audio volume and balance

Syntax: setvolume(volume=cellmin, balance=cellmin,

fadetime=0)

volume This (optional) parameter holds the new volume
level, a value in the range 0. . .100.

balance This (optional) parameter holds the new balance
setting, a value in the range −100. . .100.

fadetime The duration in milliseconds to take for the vol-
ume or balance change.

Returns: true on success, false on failure.

Notes: If the output channels are muted, the new settings take effect
as soon as the audio is unmuted.

The value for the volume level is relative to the range set with
volumebounds.

Fading the change in volume (or balance) happens in the back-
ground. The script continues running while the fading takes
place (this is in contrast with the “fade” parameters of func-
tions like play and stop, that wait until the fade is complete).
When fading is complete, the script receives an @audiostatus

event with the code FadeCompleted. Function getvolume can
also be used to check whether a fade is in progress.

Example: See serial.p on page 14.

See also: bass, getvolume, mute, treble, volumebounds

spi Send SPI data

Syntax: spi(const data[], size=sizeof data, frequency=1,

select=1, mode=1)

data An array with the bytes to send. Each element
(cell) holds a byte to send. To read data from a
device, one typically sends a zero byte.

spi � 89

size The number of elements (in parameter data) to
send.

frequency The SPI clock frequency in MHz. The default
value of 1 means a 1 MHz clock.

select The SPI “chip select” line (also called “slave se-
lect”). The SPI hardware reserves two chip select
pins on the extension connector; see the notes for
the details. When this parameter is set to zero,
no chip select is issued at all.

mode The SPI mode to use; valid values are in the
range 0. . .3. See the notes for details.

Returns: The last value returned by the remote device.

Notes: The H0420 has an SPI bus on its extension connector. To use
the SPI bus, you must therefore connect the device to com-
municate with to the relvant pins on the extension connector.
The data sheet documents the pins to use. Briefly, the pins
are:
⋄ pin 44: clock
⋄ pin 21: serial out (MOSI)
⋄ pin 45: serial in (MISO)
⋄ pin 18: chip select line 1
⋄ pin 16: chip select line 2

Since there are two chip select lines, the function can commu-
nicate with two SPI devices.

The data array must hold a byte in each cell element. In other
words, it must be an unpacked array.

When reading data from a device, write a byte with the spi

function and use the return value. That is, call spi with size

set to 1 (and a valid data parameter) and the value returned
by the spi function is the value that the device returned. Some
devices require additional time to process a read command. In
such a case, send two bytes with the spi function instead of
one.

SPI is flexible in its specification of the clock polarity and the
sampling flank (the “phase”). The SPI “mode” selects one of

90 � standby

the four possible configurations. Another method that is often
used is to specify the polarity and phase separately (these are
denoted as “cpol” and “cphase”). The relation between these
values is:
⋄ mode 0: cpol = 0, cphase = 0
⋄ mode 1: cpol = 0, cphase = 1
⋄ mode 2: cpol = 1, cphase = 0
⋄ mode 3: cpol = 1, cphase = 1

standby Puts the device in “low power” mode

Syntax: standby()

Returns: This function only returns after de device has come out of
stand-by mode; the return value is always zero.

Notes: In low-power mode, the CPU and many peripheral components
of the H0420 are shut down to conserve power. The device
resumes from stand-by upon detection of a change in the switch
status or the signal level of an I/O pin. The script will handle
the event (on the switch or I/O pin) after resuming —the event
is not lost). Only events on the switch and I/O pin inputs will
take the device out of low-power mode. Activity at the RS232
port and internal events like timer ticks will not power-up the
device.

Typical current consumption values or the H0420 are:
⋄ 140 mA when playing audio
⋄ 105 mA when idle
⋄ 50 mA in stand-by (low power) mode

These current consumption values exclude current consump-
tion of attached components or peripherals, like LEDs, opto-
couplers or an LCD. Current consumption of the Compact-
Flash card is included, but variance in the specifications of
CompactFlash cards of different brands may cause the above
current consumption values to be off by 10%.

If low-power mode is used in combinations with the exec func-
tion, all scripts must include the low-power functionality. The

stop � 91

reason for this requirement is the presence of a special monitor-
ing circuit on the H0420, which verifies the correct functioning
of that the CPU and the embedded operating system. This cir-
cuit interferes with low-power mode because low-power mode
halts the CPU and many peripheral functions. Therefore, this
circuit must not be started if the script needs to switch to
low-power mode (once started, the circuit cannot be disabled).

The software programmable watchdog functionality is disabled
in low-power mode.

See also: exec, reset, watchdog

stop Stop playback

Syntax: stop(fadeout=0)

fadeout This (optional) parameter is the time used for
fading out the audio prior to stopping.

Returns: true on success, false on failure (no audio is currently play-
ing).

Notes: The difference between this function and function pause is that
a paused track may be resumed. The stop function releases
the resources for the track and resets the audio hardware.

The fadeout parameter is only taken into account when the
device was playing a track; when not playing audio, the func-
tion returns immediately.

Example: See serial.p on page 14.

See also: pause, play

92 � storeconfig

storeconfig Read device configuration

Syntax: storeconfig(const data[], size=sizeof data)

data An array that contains the data to be stored in
the configuration area.

size The number of cells to store in the configuration
area. The maximum size if 64 cells.

Returns: This function currently always returns 0.

Notes: The H04x0 series of MP3 controllers have an auxiliary non-
volatilememory area into which the script can store data. Typ-
ically, device configurations that should be saved even when
the CompactFlash card is exchanged, are stored in the config-
uration area. The data in the configuration area is saved even
when the power is removed.

The size of the configuration area is small: only 64 cells. Large
amounts of data should be stored on the memory card via the
file functions.

Although reading from the configuration area is fast, writing to
it is slow. In addition, the configuration area can be re-written
100,000 times on the average. Since the configuration area is
internal to the H04x0 MP3 controller, you need to replace the
board once the configuration area becomes defective due to
exceeding the number of re-writes. The configuration area is
intended to be updated only infrequently.

See also: readconfig

strcat Concatenate two strings

Syntax: strcat(dest[], const source[],

maxlength=sizeof dest)

dest The buffer in which the result will be stored.
This buffer already contains the first part of the
string.

strcmp � 93

source The string to append to the string in dest.

maxlength If the length of dest would exceed maxlength

cells after the string concatenation, the result is
truncated to maxlength cells.

Returns: The string length of dest after concatenation.

Notes: During concatenation, the source string may be converted
from packed to unpacked, or vice versa, in order to match dest.
If dest is an empty string, the function makes a plain copy of
source, meaning that the result (in dest) will be a packed
string if source is packed too, and unpacked otherwise.

See also: strcopy, strins, strpack, strunpack

strcmp Compare two strings

Syntax: strcmp(const string1[], const string2[],

bool: ignorecase=false, length=cellmax)

string1 The first string in the comparison.

string2 The first string in the comparison.

ignorecase If logically “true”, case is ignored during the
comparison.

length The maximum number of characters to consider
for comparison.

Returns: The return value is:
−1 if string1 comes before string2,
1 if string1 comes after string2, or
0 if the strings are equal (for the matched length).

Notes: Packed and unpacked strings may be mixed in the comparison.

This function does not take the sort order of non-ascii char-
acter sets into account. That is, no Unicode “Collation Algo-
rithm” is used.

See also: strequal, strfind

94 � strcopy

strcopy Create a copy of a string

Syntax: strcopy(dest[], const source[],

maxlength=sizeof dest)

dest The buffer to store the copy of the string string
in.

source The string to copy, this may be a packed or an
unpacked string.

maxlength If the length of dest would exceed maxlength

cells, the result is truncated to maxlength cells.
Note that several packed characters fit in each
cell.

Returns: The number of characters copied.

Notes: This function copies a string from source to dest. If the
source string is a packed string, the destination will be packed
too; likewise, if the source string is unpacked, the destination
will be unpacked too. See functions strpack and strunpack

to convert between packed and unpacked strings.

See also: strcat, strpack, strunpack

strdel Delete characters from the string

Syntax: bool: strdel(string[], start, end)

string The string from which to remove a range char-
acters.

start The parameter start must point at the first
character to remove (starting at zero).

end The parameter end must point behind the last
character to remove.

Returns: true on success and false on failure.

Notes: For example, to remove the letters “ber” from the string “Jab-
berwocky”, set start to 3 and end to 6.

See also: strins

strfind � 95

strequal Compare two strings

Syntax: bool: strequal(const string1[], const string2[],

bool: ignorecase=false,

length=cellmax)

string1 The first string in the comparison.

string2 The first string in the comparison.

ignorecase If logically “true”, case is ignored during the
comparison.

length The maximum number of characters to consider
for

Returns: true if the strings are equal, false if they are different.

See also: strcmp

strfind Search for a sub-string in a string

Syntax: strfind(const string[], const sub[],

bool: ignorecase=false, index=0)

string The string in which you wish to search for sub-
strings.

sub The sub-string to search for.

ignorecase If logically “true”, case is ignored during the
comparison.

index The character position in string to start search-
ing. Set to 0 to start from the beginning of the
string.

Returns: The function returns the character index of the first occurrence
of the string sub in string, or −1 if no occurrence was found.
If an occurrence was found, you can search for the next occur-
rence by calling strfind again and set the parameter offset
to the returned value plus one.

96 � strfixed

Notes: This function searches for the presence of a sub-string in a
string, optionally ignoring the character case and optionally
starting at an offset in the string.

See also: strcmp

strfixed Convert from text (string) to fixed point

Syntax: Fixed: strfixed(const string[])

string The string containing a fixed point number in
characters. This may be either a packed or un-
packed string. The string may specify a frac-
tional part, e.g., “123.45”.

Returns: The value in the string, or zero if the string did not start with
a valid number.

strformat Convert values to text

Syntax: strformat(dest[], size=sizeof dest,

bool: pack=false, const format[], . . .)

dest The string that will contain the formatted result.

size The maximum number of cells that the dest pa-
rameter can hold. This value includes the zero
terminator.

pack If true, the string in dest will become a packed
string. Otherwise, the string in dest will be un-
packed.

format The string to store in dest, which may contain
placeholders (see the notes below).

... The parameters for the placeholders. These val-
ues may be untagged, weakly tagged, or tagged
as rational values.

Returns: This function always returns 0.

strins � 97

Notes: The format parameter is a string that may contain embedded
placeholder codes:
%c store a character at this position
%d store a number at this position in decimal radix
%q store a fixed point number at this position
%r same as %q (for compatibility with other implementations

of pawn)
%s store a character string at this position
%x store a number at this position in hexadecimal radix

The values for the placeholders follow as parameters in the
call.

You may optionally put a number between the “%” and the
letter of the placeholder code. This number indicates the field
width; if the size of the parameter to print at the position
of the placeholder is smaller than the field width, the field is
expanded with spaces.

The strformat function works similarly to the sprintf func-
tion of the C language.

See also: valstr

strins Insert a sub-string in a string

Syntax: bool: strins(string[], const substr[], index,

maxlength=sizeof string)

string The source and destination string.

substr The string to insert in parameter string.

index The character position of string where substr

is inserted. When 0, substr is prepended to
string.

maxlength If the length of dest would exceed maxlength

cells after insertion, the result is truncated to
maxlength cells.

Returns: true on success and false on failure.

98 � strlen

Notes: During insertion, the substr parameter may be converted from
a packed string to an unpacked string, or vice versa, in order
to match string.

If the total length of string would exceed maxlength cells
after inserting substr, the function raises an error.

See also: strcat, strdel

strlen Return the length of a string

Syntax: strlen(const string[])

string The string to get the length from.

Returns: The length of the string in characters (not the number of cells).
The string length excludes the terminating “\0” character.

Notes: Like all functions in this library, the function handles both
packed and unpacked strings.

To get the number of cells held by a packed string of a given
length, you can use the predefined constants charbits and
cellbits.

See also: ispacked

strmid Extract a range of characters from a string

Syntax: strmid(dest[], const source[],

start=0, end=cellmax,

maxlength=sizeof dest)

dest The string to store the extracted characters in.

source The string from which to extract characters.

start The parameter start must point at the first
character to extract (starting at zero).

end The parameter end must point behind the last
character to extract.

strpack � 99

maxlength If the length of dest would exceed maxlength

cells, the result is truncated to maxlength cells.

Returns: The number of characters stored in dest.

Notes: The parameter start must point at the first character to ex-
tract (starting at zero) and the parameter end must point be-
hind the last character to extract. For example, when the
source string contains “Jabberwocky”, start is 1 and end is
5, parameter dest will contain “abbe” upon return.

See also: strdel

strpack Create a “packed” copy of a string

Syntax: strpack(dest[], const source[],

maxlength=sizeof dest)

dest The buffer to store the packed string in.

source The string to copy, this may be a packed or an
unpacked string.

maxlength If the length of dest would exceed maxlength

cells, the result is truncated to maxlength cells.
Note that several packed characters fit in each
cell.

Returns: The number of characters copied.

Notes: This function copies a string from source to dest where the
destination string will be in packed format. The source string
may either be a packed or an unpacked string.

See also: strcat, strunpack

100 � strunpack

strunpack Create an “unpacked” copy of a string

Syntax: strunpack(dest[], const source[],

maxlength=sizeof dest)

dest The buffer to store the unpacked string in.

source The string to copy, this may be a packed or an
unpacked string.

maxlength If the length of dest would exceed maxlength

cells, the result is truncated to maxlength cells.

Returns: The number of characters copied.

Notes: This function copies a string from source to dest where the
destination string will be in unpacked format. The source
string may either be a packed or an unpacked string.

See also: strcat, strpack

strval Convert from text (string) to numbers

Syntax: strval(const string[], index=0)

string The string containing a number in characters.
This may be either a packed or unpacked string.

index The position in the string where to start looking
for a number. This parameter allows to skip an
initial part of a string, and extract numbers from
the middle of a string.

Returns: The value in the string, or zero if the string did not start with
a valid number (starting at index).

See also: valstr

taginfo � 101

swapchars Swap bytes in a cell

Syntax: swapchars(c)

c The value for which to swap the bytes.

Returns: A value where the bytes in parameter “c” are swapped (the
lowest byte becomes the highest byte).

taginfo Return ID3 tag information

Syntax: taginfo(ID3String: code, destination[],

size=sizeof destination)

code The code for the requested field, one of the fol-
lowing:

ID3 Title (0)
Track title.

ID3 Artist (1)
Name of the artist or band.

ID3 Album (2)
Album title.

ID3 Comment (3)
General comment.

ID3 Copyright (4)
Copyright information.

ID3 Year (5)
Year of the album.

ID3 Track (6)
The track number on the original CD.

ID3 Length (7)
Duration of the track in milliseconds.

destination

The buffer that will hold the returned tag field
as a packed string. This will be an empty string
if no tag is present or if the requested field is not
in the tag.

102 � tickcount

size The size of the destination buffer in cells. Since
the field is stored as a packed string, the number
of characters that fit in the buffer is 4 times the
value of this parameter.

Returns: This function currently always returns 0.

Notes: See section “Resources” on page 112 for details on the ID3 tag
and pointers to software to create the tags.

The SYLT (Synchronized lyrics) tag is not returned by this
function, but events or cues in the SYLT tag “fire” the public
function @synch at the appropriate times.

The H0420 supports version 2 of the ID3 tag. The presence of
an ID3 tag in an MP3 file is entirely optional. If it is included,
all fields in the tag are each optional as well. The field for the
duration of the track is frequently absent from tracks extracted
from audio CDs, for example, whereas the track number is
typically set only for tracks extracted from an audio CD.

The support for Unicode frames in the ID3 tag is limited to
the characters of the Basic Multilingual Plane.

The duration of the track can also be read from the header
information, see function headerinfo.

Example: See mp3info.p on page 11.

See also: @synch, headerinfo

tickcount Return the current tick count

Syntax: tickcount(&granularity=0)

granularityUpon return, this value contains the number of
ticks that the internal system time will tick per
second. This value therefore indicates the accu-
racy of the return value of this function.

Returns: The number of milliseconds since start-up of the system. For
a 32-bit cell, this count overflows after approximately 24 days
of continuous operation.

toupper � 103

Notes: If the granularity of the system timer is “100” (a typical value
for unix systems), the return value will still be in millisec-
onds, but the value will change only every 10 milliseconds (100
“ticks” per second is 10 milliseconds per tick).

This function will return the time stamp regardless of whether
a timer was set up with settimer.

See also: settimer

tolower Convert a character to lower case

Syntax: tolower(c)

c The character to convert to lower case.

Returns: The upper case variant of the input character, if one exists, or
the unchanged character code of “c” if the letter “c” has no
lower case equivalent.

Notes: Support for accented characters is platform-dependent.

See also: toupper

toupper Convert a character to upper case

Syntax: toupper(c)

c The character to convert to upper case.

Returns: The lower case variant of the input character, if one exists, or
the unchanged character code of “c” if the letter “c” has no
upper case equivalent.

Notes: Support for accented characters is platform-dependent.

See also: tolower

104 � treble

treble Tone adjust (treble)

Syntax: treble(gain, frequency=3000)

gain The gain in the range

gain The gain in the range −12 to +12. Each step is
in 1.5 dB (so the range of gain is −18. . .+18 dB.

frequency The frequency at which the attenuation/enhan-
cement starts. The suggested range is 1.5 kHz to
5 kHz; a typical value is 3000 Hz. This parameter
is clamped between 1 kHz and 10 kHz (1000 to
10.000 Hz).

Returns: true on success, false on failure.

Notes: The volume level is downward adjusted to allow for the max-
imum enhancement of bass or treble, while avoiding clipping.
That is, when enhancing treble frequencies, the overall volume
may decrease.

See also: bass, setvolume

uudecode Decode an UU-encoded stream

Syntax: uudecode(dest[], const source[],

maxlength=sizeof dest)

dest The array that will hold the decoded byte array.

source The UU-encoded source string.

maxlength If the length of dest would exceed maxlength

cells, the result is truncated to maxlength cells.
Note that several bytes fit in each cell.

Returns: The number of bytes decoded and stored in dest.

uuencode � 105

Notes: Since the UU-encoding scheme is used for binary data, the
decoded data is always “packed”. The data is unlikely to be a
string (the zero-terminator may not be present, or it may be
in the middle of the data).

A buffer may be decoded “in-place”; the destination size is
always smaller than the source size. Endian issues (for multi-
byte values in the data stream) are not handled.

Binary data is encoded in chunks of 45 bytes. To assemble
these chunks into a complete stream, function memcpy allows
you to concatenate buffers at byte-aligned boundaries.

See also: memcpy, uuencode

uuencode Encode an UU-encoded stream

Syntax: uuencode(dest[], const source[], numbytes,

maxlength=sizeof dest)

dest The array that will hold the encoded string.

source The UU-encoded byte array.

numbytes The number of bytes (in the source array) to
encode. This should not exceed 45.

maxlength If the length of dest would exceed maxlength

cells, the result is truncated to maxlength cells.
Note that several bytes fit in each cell.

Returns: Returns the number of characters encoded, excluding the zero
string terminator; if the dest buffer is too small, not all bytes
are stored.

Notes: This function always creates a packed string. The string has a
newline character at the end.

Binary data is encoded in chunks of 45 bytes. To extract 45
bytes from an array with data, possibly from a byte-aligned
address, you can use the function memcpy.

A buffer may be encoded “in-place” if the destination buffer is
large enough. Endian issues (for multi-byte values in the data
stream) are not handled.

106 � valstr

See also: memcpy, uudecode

valstr Convert a number to text (string)

Syntax: valstr(dest[], value, bool: pack=false)

dest The string to store the text representation of the
number in.

value The number to put in the string dest.

pack If true, dest will become a packed string, oth-
erwise it will be an unpacked string.

Returns: The number of characters stored in dest, excluding the termi-
nating “\0” character.

Notes: Parameter dest should be of sufficient size to hold the con-
verted number. The function does not check this.

See also: strval

version Return the firmware version

Syntax: version(FirmwareVersion: code)

code The code for the requested field, one of the fol-
lowing:

VersionMajor (0)
The major version number, always 1 for
the H0420.

VersionMinor (1)
The minor version number, e.g. 6 for
version 1.6 of the firmware.

VersionBuild (2)
The build number, which is a unique
number for a particular revision of the
firmware.

volumebounds � 107

VersionOptions (3)
A bit mask with the options that are
compiled into the firmware. Currently,
only bit 0 is defined: when set, the firm-
ware includes a TCP/IP stack for a net-
work interface.

Returns: This function returns the requested value, or zero on error.
Note that the build number is never zero.

volumebounds Set range for the volume

Syntax: volumebounds(low=0, high=100)

low The lower limit of the volume range.

high The upper limit of the volume range.

Returns: This function currently always returns 0.

Notes: The setvolume function adjusts the volume between the lower
and and upper limits that are defined by this function. By
default, the range is 0. . .100 (full range).

The relation between a “volume setting” and the perceived
“loudness” of and audio signal is a complex one. Audio volume
is normally measured in “decibels” (dB). A decibel is a ratio,
like a percentage. If you set the volume of the MP3 player to
100, this does not mean that it will produce 100 dB, but rather
that it is at full volume.

Relative audio levels also have another impact: whether we
can hear some audible signal also depends on the level of the
environmental sound. This changes per application of the MP3
player, of course. The purpose of the volumebounds function
is to set the maximum volume that is deemed useful and the
minimum volume level that is audible (given the typical envi-
ronmental noise). Once the bounds are set, the desired volume
can be set with function setvolume, with a range 0. . .100.

If the volume range is not set (or set to the full range), it
may happen (e.g. in a noisy environment) that the effective

108 � watchdog

range of the setvolume function is 70. . .100 —meaning that
at any volume level below 70, the audio from the MP3 player
“drowns” in the environmental noise.

The decibel range is a logarithmic scale: a difference of 10
dB between two sound signals means that one signal is twice
as loud as the other. A difference of 20 dB gives a factor of
four in relative loudness (2× 2) and 30 dB is a factor of eight
(2× 2× 2).

See also: setvolume

watchdog Watchdog timer

Syntax: watchdog(seconds)

seconds The number of seconds that the script may use
for handling an event before a full reset is acti-
vated.

Returns: This function currently always returns zero.

Notes: A watchdog timer is a guard against an infinite loop in the
script or other activity that causes the device to hang (and be-
come non-responsive). When setting the watchdog, you specify
the maximum time that the script is allowed to take for han-
dling an event. If the script takes longer than this, the watch-
dog timer assumes that the script is “stuck” and it issues a full
reset of the device.

The time-out that you allow for the watchdog should be long
enough to be confident that something has gone awry in the
script. For example, if the script typically handles an event
within a second, but may take up to 5 seconds on rare oc-
casions, a good value for the watchdog time-out would be 10
seconds (twice the longest latency).

See also: reset

wavegenerator � 109

wavegenerator Produce a waveform on the analogue output

Syntax: wavegenerator(Fixed: frequency=0.0,

WaveType: wavetype=WaveNone, range=8)

frequency The desired frequency of the wave signal. This
must be a value between 0.001 and 5000, for a
range of 0.001 Hz to 5 kHz. If this parameter is
0.0, the wave generator is shut off. If parameter
wavetype is WaveBitStream, the frequency is in
bits per second.

wavetype The shape of the wave; one of the following:
WaveNone (0) Disable wave output (shut off

wave generation).
WaveSine (1) Sine wave
WaveTriangle (2) Triangle wave
WaveSquare (3) Square wave
WaveSawTooth (4) Saw tooth, ramp up
WaveInvSawTooth(5) Saw tooth, ramp down
WaveBitStream (6) Pulse train; the range pa-

rameter holds up to 32 bits that
are send out at the requested fre-
quency (see the notes).

range For all wave type except WaveBitStream, this
parameter is the amplitude scale for the wave
signal. It is one of the following:
0 0–0.02 V
1 0–0.04 V
2 0–0.08 V
3 0–0.15 V
4 0–0.3 V
5 0–0.6 V
6 0–1.2 V
7 0–2.5 V
8 0–5 V

If wavetype is WaveBitStream, the range pa-
rameter is the stream of bits to be sent (see the
notes).

110 � wherexy

Returns: true on success and false on failure. This function fails if a
console (LCD) has been set up.

Notes: This function set up a wave generator in I/O pin 16, the ana-
logue output pin. No console/LCD may be set up, because the
LCD uses the same pin to adjust the contrast.

If either the parameter frequency is 0.0 or the wavetype is
WaveNone, the wave generation is shut off.

The wave signal is digitally sampled with 256 amplitude steps
and at a frequency of maximally 10 kHz. When the value of
parameter frequency is set at 5 kHz (the maximum), there
are only two samples for a complete wave cycle. As a result,
the triangle and sine wave types are indistinguishable from the
square wave type at this maximum frequency.

When wavetype is WaveBitStream, the frequency parameter
is in bits per second and the range parameter holds the 32
bits that are sent out with the lowest bit transmitted first.
The amplitude of the bit stream is always 0–5 V. The function
always sends out 32 bits; if your application requires shorted
bit stream, make sure that the trailing bits in the range pa-
rameter are set to the “idle” level.

See also: configiopin, console, setiopin

wherexy Return the cursor position

Syntax: wherexy(&x, &y)

x Will hold the horizontal cursor position on re-
turn.

y Will hold the vertical cursor position on return.

Returns: Always return 0.

Notes: The upper left corner is at (1,1).

See also: gotoxy

writecfgvalue � 111

writecfg Writes a text field to an INI file

Syntax: bool: writecfg(const filename[]="",

const section[]="", const key[],

const value[])

filename The name and path of the INI file. If this pa-
rameter is not set, the function uses the default
name “config.ini”.

section The section to store the key under. If this pa-
rameter is not set, the function stores the key/
value pair outside any section.

key The key for the field.

value The value for the field.

Returns: true on success, false on failure.

See also: deletecfg, readcfg, writecfgvalue

writecfgvalue Writes a numeric field to an INI file

Syntax: bool: writecfgvalue(const filename[]="",

const section[]="",

const key[], value)

filename The name and path of the INI file. If this pa-
rameter is not set, the function uses the default
name “config.ini”.

section The section to store the key under. If this pa-
rameter is not set, the function stores the key/
value pair outside any section.

key The key for the field.

value The value for the field, as a signed (decimal)
number.

Returns: true on success, false on failure.

See also: readcfgvalue, writecfg

112

Resources

The pawn toolkit can be obtained from www.compuphase.com/pawn/
in various formats (binaries and source code archives).

Note that the downloadable version is a general-purpose release, whereas the
one that comes with the H0420 is configured for the device. If you wish to
update the pawn tool chain, back up the configuration files “pawn.cfg” and
“default.inc”. These two files contain settings specific for the H0420.

The anatomy of the MPEG files is broadly described on several places on
the web and in books. For example, see:
⋄ http://www.mp3-tech.org/
⋄ “MP3: The Definitive Guide” by Scot Hacker; First Edition March
2000; O’Reilly; ISBN: 1-56592-661-7.

Various “application notes” on how to prepare audio fragments for looping
playback and chaining tracks are available on the compuphase web site, at
the above mentioned address. The number of applications notes will grow
over time, so you are invited to visit on www.compuphase.com/mp3/ a
regular basis.

The MPEG file format is a collection of ISO standards. A detailed spec-
ification can therefore be obtained from the ISO offices. That said, the
description of the “layer 3” audio sub-format consists basically of the source
code of the encode/decoder programs that were developed at Fraunhofer IIS.

The (informal) standard of the ID3 tag is on the site http://www.id3.org
together with links to software that reads and writes these tags. The H0420
only supports version 2 of this tag —version 1 is not supported. Many tag
editors exist, both commercial and freeware, but only few can generate the
SYLT (Synchronized Lyrics) tag.

Since the H0420 MP3 player/controller is an audio device, it helps to know
a bit about audio and sound. A good start is the description of “decibels”
and how that measure relates to volume, energy and loudness. For more
information, see http://en.wikipedia.org/wiki/Decibel.

113

Index

⋄ Names of persons or companies (not products) are in italics.
⋄ Function names, constants and compiler reserved words are in typewriter

font.

! @alarm, 7, 31
@audiostatus, 31
@button, 32

@eject, 32
@input, 32
@receive, 15, 33
@receivebyte, 16, 34

@receivepacket, 16, 34
@reset, 35
@sample, 35

@synch, 8, 36
@timer, 7, 37

A Absolute value, 47

Alarm clock, See Timer alarm
Apple Macintosh, 18
ASCII, 22

Atomic execution, 2
Audio status, 31, 38
audiostatus, 38

Auto-wrap, 43

B Back-quote, 21
Balance, 63, 88
Banker’s rounding, 57
Base 10, See Decimal arithmetic

Base 2, See Binary arithmetic
Basic Multilingual Plane, 22
bass, 38

Baud rate
non-standard ~, 85

Big Endian, 19

Binary files, 18

Bit rate, 64
average ~, 64
constant ~, 65
variable ~, 65

Bit reservoir, 72

button, 39

C Card eject, 32

CBR, See Constant bit rate

cell, 24

Channels, 39

channelselect, 39

clamp, 40

clearioqueue, 40

clreol, 41

clrscr, 41

CompactFlash card, 32, 90

configiopin, 41

Configuration area, 77, 92

consctrl, 43

console, 10, 44

Constant bit rate, 65, 79

Copy file, 49

Create directory, 53

Current consumption, 90

cvttimestamp, 45

114 � Index

D Debugging, 26, 29, 78
delay, 45
Delete file, 56
deletecfg, 46
Directory, 53, 56
Directory support, 17
Display, 9
Dropped digits, 24
DVD player, 16

E Eject (card), 32
Encrypted tracks, 68
End-Of-Line character, 18
Entry point, 1, 33, 35
Event Driven, 1
Event-driven programming, 46
exec, 47
Exponentiation, 55
Extension connector, 89

F fabs, 47
Fade (volume), 63, 88
FAT, 17
fattrib, 47
fblockread, 48
fblockwrite, 48
fclose, 49
fcopy, 49
fdiv, 50
fexist, 50
ffract, 24, 51
fgetchar, 51
File handle, 55
File I/O, 17
filecrc, 51
fixed, 24, 52
flength, 52

Flow-driven programming model,
2, 6

fmatch, 52
fmkdir, 53
fmul, 53
fmuldiv, 54
Font, 9
fopen, 54
Forbidden operators, 25
fpower, 55
fputchar, 55
Frame header, 10, 63
Fraunhofer IIS, 112
fread, 56
fremove, 56
frename, 57
fround, 24, 57
fseek, 58
fsqroot, 59
fstat, 59
funcidx, 60
Functions

~ index, 60
fwrite, 60

G getarg, 61
getdate, 61
getiopin, 62
gettime, 62
getvolume, 63
gotoxy, 63

H Hacker, Scot, 112
Handshaking, 33, 34, 71, 78, 80,
81, 86

HD44780, 9
headerinfo, 63
heapspace, 65
Host application, 60

Index � 115

I I/O pins, 32, 40, 41, 62

Icecast, 21

ID3 tag, 8, 10, 36, 101

image, 66

INI files, 21, 46, 75, 76, 111

inputlapse, 66

ISO/IEC 8859, 18

ispacked, 67

K KS0108, 9

L Latin-1, 18

LCD, 9, 26, 41–44, 63, 66, 73, 74,
110
character, 9

~ contrast, 83
graphic, 9
graphic ~, 44

LED, 3, 42

Linux, 17, 27

Little Endian, 19

Low-power mode, 90

M Magic cookie, 55

main, 33

max, 67

memcpy, 67

Microsoft DOS, 18

Microsoft Windows, 17, 18

min, 68

Modulus, 25

MP3 anatomy, 112

MP3 file format, 10, 63, 72

mp3password, 68

MPEG 2.5, 64

mute, 69

N Network support, 72

numargs, 70

O OLED, 9, 83, see also LCD

Operators

forbidden, 25

user-defined, 24, 25

Opto-coupler, 3, 42

Overlays, 25

P Pack strings, 18

Packed strings, 22

Packet filter, 70

packetfilter, 70

Password

user ~, 69

Path

relative ~, 17

~ separator, 17

pause, 71

pawndbg, 27, 29

play, 72

Playlist files, 21

PLED, 9, 83, see also LCD

Poly-raster image format, 66

Power-up, 35, 82

Precision time stamp, 66

print, 73

printf, 74

Pseudo-random numbers, 75

Public

~ functions, 60

Q Quincy IDE, 25, 27, 29

116 � Index

R random, 75
readcfg, 75
readcfgvalue, 76
readconfig, 77
Real-time clock, 7
receivebyte, 77
Relative paths, 17
Rename file, 57
Reset, 35
reset, 78
Resource id, 72
resume, 79
Rounding, 24
RS232, 29, 33, 34, 70, 78, 80, 81,
90
begin, 13
close ~, 85

~ data filter, 70
end, 16
open ~, 85

S Sample frequency, 64
Sampling, 35, 42
Scaled integer, 24
seekto, 79
sendbyte, 80
sendstring, 81
setalarm, 81
setarg, 83
setattr, 83
setdate, 7, 84
setiopin, 84
setserial, 85
settime, 7, 86
settimer, 7, 87
settimestamp, 87
setvolume, 88

Shoutcast, 21
Signal generation, 109
sleep, 46
SPI, 88
spi, 88
Square root, 59
standby, 90
stop, 91
storeconfig, 92
strcat, 92
strcmp, 93
strcopy, 94
strdel, 94
strequal, 95
strfind, 95
strfixed, 24, 96
strformat, 96
strins, 97
strlen, 98
strmid, 98
strpack, 99
strunpack, 100
strval, 100
swapchars, 101
Switches, 1, 32, 39, 40
Synchronized event, 36
Synchronized lyrics, 102, 112

T taginfo, 101
TCP/IP, See Network support
TCP/IP protocols, 18
Text files, 18
tickcount, 102
Time stamp, 66
Timer, 7
single-shot ~, 7
wall-clock ~, 7

Timer alarm, 31, 81

Index � 117

Title
artist/album ~, 101

tolower, 103
Tone adjustment, 38, 104
toupper, 103
Track resource, See Resource id
Transferring scripts, 29
treble, 104
Two’s complement, 24

U Unicode, 22, 102
UNIX, 17, 18
UNIX epoch, 45, 48, 60, 62, 87
Unpacked strings, 18, 22
URL, 72
User password (encryption), 69
User-defined operators, 24, 25
UTF-8, 18, 61
UU-encode, 14, 16, 22, 33, 80, 81,
104, 105

uudecode, 104
uuencode, 105

V valstr, 106
Variable bit rate, 65, 79
VBR, See Variable bit rate
version, 106
VFD, 9
Volume, 63, 69, 88
volumebounds, 107

W watchdog, 108
wavegenerator, 109
wherexy, 110
Wild-card characters, 19
writecfg, 111
writecfgvalue, 111

X Xing header, 65, 79
XON/XOFF, 13, 33, 34, 71, 78,
80, 81, 86

Y Yielding events, 46

	Overview
	Event-driven programming
	Modules
	Timers, synchronization and alarms
	LCD, or other displays
	RS232
	File system, file and path names
	General file I/O

	Filename matching
	INI files
	Packed and unpacked strings
	UU-encoding
	Rational numbers
	Reducing memory requirements
	Finding errors (debugging)
	Transferring scripts over RS232

	Public functions
	Native functions
	Resources
	Index

