
Starling

Model H0440

Programming Guide & Reference

Version 1.0

November 2012

CompuPhase

ii

“CompuPhase” and “Pawn” are trademarks of ITB CompuPhase.

“Linux” is a registered trademark of Linus Torvalds.

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

Copyright c© 2012, ITB CompuPhase
Eerste Industriestraat 19–21, 1401VL Bussum, The Netherlands (Pays Bas);
telephone: (+31)-(0)35 6939 261
e-mail: info@compuphase.com, WWW: http://www.compuphase.com

The information in this manual and the associated software are provided “as
is”. There are no guarantees, explicit or implied, that the software and the
manual are accurate.

Requests for corrections and additions to the manual and the software can
be directed to CompuPhase at the above address.

Typeset with TEX in the “Computer Modern” and “Palatino” typefaces at a base size of 11

points.

iii

Contents
Overview .1

Event-driven programming .1
Modules . 6
Timers, synchronization and alarms .7
RS232 .9
Packed and unpacked strings .12
UU-encoding . 13
Rational numbers .14

File system . 16
Filename matching . 18
INI files . 20

Network .21
Usage . 21
Low-level interface .22
High-level interface . 24
Audio streams . 25
Transferring files . 31
Monitoring and configuration with SNMP .32
HTTP, FTP and TFTP servers . 35

Development and debugging . 39
Reducing memory requirements .39
Finding errors (debugging) .40
Transferring scripts over RS232 . 41

Public functions .44
Native functions .56
Resources . 136
Index .137

iv

1

Overview

The “pawn” programming language is a general purpose scripting language,
and it is currently in use on a large variety of systems: from servers to em-
bedded devices. Its small footprint, high performance and flexible interface
to the “native” functionality of the host application/system, make pawn

well suited for embedded use.

This reference assumes that the reader understands the pawn language. For
more information on pawn, please read the manual “The pawn booklet —
The Language” which comes with the Starling. For an introduction of the
Starling model H0440 and its programming interface, please see the Starling
manual.

Event-driven programming

The Starling follows an “event-driven” programming model. In this model,
your script does not poll for events, but instead an event “fires” a function
in your script. This function then runs to completion and then returns. In
absence of events, the script is idle: no function runs.

The general I/O pins of the Starling are defined as inputs on start-up and
@input: 45each pin has an internal pull-up. When an I/O pin is shorted to the ground,

this fires a “input status changed” event and the @input function in your
script will run.∗ The @input function then handles the event, perhaps by

∗
Provided that the script contains an @input function; if the script lacks the @input function,

the “input status changed” events would be discarded.

2 � Event-driven programming

starting to play another track, or changing volume or tone settings. After
it is done, @input simply returns or exits the script. The script is now idle,
but another event may wake it up. The event-driven programming model
thereby creates reactive and/or interactive programs. The general manual
“The pawn booklet — The Language” has more details on the event-driven
model.

The following script is a first, simple, example for scripting the Starling. In
this script, the eight inputs are “linked” to playing eight tracks, with hard-
coded names. Simplicity is the goal for this first example: later examples
will remove the limitations of this script. For the syntax of the program-
ming language, please see the general manual “The pawn booklet — The
Language”.

Listing: switches1.p

/* switches1

*

* Play a track that is attached to an input; there are eight tracks

* associated with eight inputs. The tracks have predefined names.

* The inputs have an internal pull-up, so their default state is

* high (1).

*

* When pressing a switch for a track that is already playing, the

* track restarts.

*/

@input(pin, status)

{

/* act only on high-to-low edge (switch press) */

if (status == 0)

{

switch (pin)

{

case 0: play "track1.mp3"

case 1: play "track2.mp3"

case 2: play "track3.mp3"

case 3: play "track4.mp3"

case 4: play "track5.mp3"

case 5: play "track6.mp3"

case 6: play "track7.mp3"

case 7: play "track8.mp3"

}

}

}

When a function in the script is running, no other event can be handled.
That is, while the script is busy inside, say, the @timer function, a change
of an input is queued. Only after the pending function has completed and

Event-driven programming � 3

has returned, will the “input change” event be handled. Functions do not
interrupt or pre-empt each other.

On power-up, the first function that will run is @reset.2 In this function,
you set up the peripherals that you need: RS232, I/O ports, SPI, or other.
In most programming systems/languages, the program is over as soon as
the function @reset (or another primary entry point) returns —this is the
traditional “flow-driven” programming model. With the event-driven model
in pawn and the Starling, the script continues to be active after @reset

returns. In fact, as the switches1.p script presented above demonstrates,
function @reset is optional: you do not need to include it in your script if
you have no particular initializations to make.

The event-driven programming model becomes convenient when the number
of “events” grows. Each event has a separate “handler” (a public function
in the pawn environment) and it is processed individually. As an example,
the next script also turns the green LED on for the duration of the track.
That is, while the Starling is playing audio, the LED will be on, and when
not playing, it will be off. To toggle the LED, the script uses a second event:
the status of the audio decoder.

Listing: switches2.p

/* switches2

*

* Play a track that is attached to an input; there are eight tracks

* associated with eight inputs. The tracks have predefined names.

* The inputs have an internal pull-up, so their default state is

* high (1).

*

* The green LED is on when audio is playing and off when it is

* silent.

*

* When pressing a switch for a track that is already playing, the

* track restarts.

*/

@reset()

{

/* turn green LED off on start-up (no track is playing yet) */

setled LED_Green, false

}

2
@reset is an alias for main.

4 � Event-driven programming

@input(pin, status)

{

/* act only on high-to-low edge (switch press) */

if (status == 0)

{

switch (pin)

{

case 0: play "track1.mp3"

case 1: play "track2.mp3"

case 2: play "track3.mp3"

case 3: play "track4.mp3"

case 4: play "track5.mp3"

case 5: play "track6.mp3"

case 6: play "track7.mp3"

case 7: play "track8.mp3"

}

}

}

@audiostatus(AudioStat: status, decoder)

{

if (status == Playing)

setled LED_Green, true

else

setled LED_Green, false

}

As is apparent from this second example, function @reset serves for one-
time initialization. Here, it merely switches the green LED off, because on
start-up, no track is playing yet.

Function @audiostatus is another event function, that runs when the status
@audiostatus: 44

of the audio decoder changes; the parameter holds the new status, which can
be Stopped, Playing or Paused.

Apart from the “event” functions @input and @audiostatusmentioned ear-
getiopin: 75 lier, the Starling programming environment also contains native functions

getiopin and audiostatus (without the “@” prefix). The getiopin func-
tion returns the current status of an input pin. With it, you can check the
status of each pin at any convenient time. Likewise, the audiostatus func-
tion returns the active status of (one of) the audio decoders. With these
functions in hand, you could create a polling loop inside @reset and skip
the entire event-driven paradigm. For illustration, the next sample does this.

Event-driven programming � 5

Listing: switches2a.p

/* switches2a

*

* The same program as switches2, but now implemented as a non-event

* driven program.

*/

@reset()

{

/* turn green LED off on start-up (no track is playing yet) */

setled LED_Green, false

/* we have to keep the status of all switches (in order to detect

* the changes)

*/

new curpin[8]

/* we need an extra variable outside the loop to detect changes

* in playback status

*/

new AudioStat: curstatus = Stopped

/* this loop should never end */

for (;;)

{

/* test all inputs */

new pin, status

for (pin = 0; pin < 8; pin++)

{

status = getiopin(pin)

if (status != curpin[pin])

{

/* status changed, save new status */

curpin[pin] = status

/* ignore low-to-high edge, act on high-to-low only */

if (status == 0)

{

switch (pin)

{

case 0: play "track1.mp3"

case 1: play "track2.mp3"

case 2: play "track3.mp3"

case 3: play "track4.mp3"

case 4: play "track5.mp3"

case 5: play "track6.mp3"

case 6: play "track7.mp3"

case 7: play "track8.mp3"

}

}

}

}

/* test the audio status */

new AudioStat: audiostat = audiostatus()

6 � Modules

if (audiostat != curstatus)

{

curstatus = audiostat

if (audiostat == Playing)

setled LED_Green, true

else

setled LED_Green, false

}

}

}

In the flow-driven programming model, you have to poll for events, rather
than respond to them. In programming methodologies, the flow-driven and
event-driven models are reciprocal: the flow-driven model queries for events,
the event-driven model responds to events. Especially in the situations where
the number of events grows, the event-driven model produces neater and
more compact scripts, that require less memory and in addition respond to
the events quicker.

Modules

As a programming tool, pawn consists of the “language” and a “library”.
The language is standardized and common for all applications. The library
gives access to all the functionality that the host application/device provides.
That being the case, the library is typically highly specific to the system
into which pawn is embedded. In other words, pawn lacks something like a
standard library.

On the other hand, it quickly proved convenient to let applications and de-
vices provide similar functionality in a common way. This led to the library
to be split up in several independent modules (which are also documented
independently). An application/device, then, takes its choice of “modules”,
in addition to the application-specific interface functions.

This reference documents the functions that are specific to the Starling and
the essentials from the several modules that it uses. These modules are:
Core The set of “core” functions (which support the language)

is documented in this book, as well as in the main book on
pawn: “The pawn booklet — The Language”.

File I/O General purpose file reading and writing functions, for both
text and binary files.

Timers, synchronization and alarms � 7

Fixed-point Fixed-point rational arithmetic is supported. Details on
the fixed-point interface is in a separate application note
“Fixed Point Support Library”.

String functions pawn uses arrays for strings, and the Starling provides a
general set of string functions.

Time functions The interface to the “date & time of the day”, as well as
the event timer (with a millisecond resolution).

Timers, synchronization and alarms

The Starling provides various ways to react on timed events. These may be
used in combination, as they run independently of each other.

For activities that must run at a constant interval, the @timer is usually
the most convenient. This timer is set with function settimer to “go off”
each time an specific interval has elapsed. This interval is in milliseconds
—however, the timer resolution is not necessarily one millisecond. Due to
the event-driven nature of the Starling, the precision of the timer depends on
the activity of other public functions in the script. Nevertheless, the @timer
function is the quick and precise general purpose timer.

The @timer function can also be set up as a single-shot timer. A single shot
timer fires are the specified number of milliseconds “from now” and fires only
once. This may be useful for time-out checking, for example.

The second timer is the @alarm function, which is set through the setalarm
function. The primary purpose of this timer is to set a callback that fires
at a specific “wall-clock” time. This timer may also be set to fire only at a
specific date (in addition to a time). The @alarm timer is a repeating timer,
but if you include the date and the year in the alarm specification, it has
effectively become a single-shot timer (“year” numbers in dates do not wrap
around, so they occur only once).

If you use the @alarm function, it may be needed to synchronize the internal
clock of the Starling to the actual time. This can be done with the functions
setdate and settime. When exchanging the backup battery, the Starling
resets its clock to 1 January 1970.

For some purposes, you do not need absolute time, and you can use the
@alarm function simply as a second timer. In comparison with the @timer

function, @alarm as a low resolution.

8 � Timers, synchronization and alarms

When events must be synchronized with audio that is playing, the appro-
priate function is the @synch “timer” that works together with an ID3 tag,
and specifically the SYLT frame in this tag. An ID3 tag is a block of infor-
mation that is stored inside the audio file —typically an MP3 file. The tag
usually contains artist and album information, and it may contains other
information as well. By adding time-stamped text to an MP3 file (in its ID3
tag), the @synch function will “fire” at the appropriate times and holding
the line of text in its parameter. The script can then interpret the text and
act appropriately.

The example below plays an MP3 file∗ that was prepared with a SYLT frame
in its ID3 tag. The SYLT tag contains time-stamp strings in the form of:

+1 −2
where:

⋄ the operator (“+” or “−”) indicates a “toggle-on” or “toggle-off” com-
mand for one of the on-board LEDs

⋄ the number following the operator indicates which LED (1 for red, 2 for
green)

Any number of codes may be on single time-stamped line, so you can turn on
both LEDs in the same command—or turn on one LED while simultaneously
turning of the other.

Listing: sylt.p

/* Plays an audio track and turns on and off LEDs based on the

* commands stored in the ID3 tag (the SYLT frame).

*

* The commands have the form "+1 -2", where the numbers stand

* for the LEDs (red and green), and "+" and "-" mean "turn on" and

* "turn off" respectively. So in this example, the red LED is turned

* on and the green LED is turned off.

*/

@reset()

{

/* turn both LEDs off */

setled LED_Red, false

setled LED_Green, false

∗
The original MP3 file was recorded from a music box by Thea from the Klankbeeld group,

and placed under the “Creative Commons” license.

RS232 � 9

/* The "Tea for Two" theme recorded from a music box by Thea from

* the Klankbeeld group. Published on the freesound.org site.

*/

play "teafortwo.mp3"

}

@synch(const event{})

{

for (new index = 0; /* test is in the middle */ ; index++)

{

/* find first ’+’ or ’-’ */

new c

while ((c = event{index}) != ’-’ && c != ’+’ && c != EOS)

index++

if (c == EOS)

break /* exit the loop on an End-Of-String */

/* get the value behind the operator (’+’ or ’-’) */

new pin = strval(event, index + 1)

/* the pins are numbered 1, 2,..., but the LEDs start at zero */

new LED:led = LED:(pin - 1)

/* turn on or off the led (based on the operator) */

setled led, (c == ’+’)

}

}

RS232

The Starling has a standard serial RS232 interface, with two ports. All
common Baud rates and data word lay-outs are supported. The interface
optionally supports software handshaking, but no hardware handshaking.
When using a single port, the DTR and DSR lines are available for hand-
shaking and testing device status.

Software handshaking is optional. When set up, software handshaking uses
the characters XOFF (ascii 19, Ctrl-S) to request that the other side stops
sending data and XON (ascii 17, Ctrl-Q) to request that it resumes sending
data. These characters can therefore not be part of the normal data stream
(as they would be misinterpreted as control codes). Software handshaking is
therefore not suitable to transfer binary data directly (since two byte values
are “reserved”). Instead, binary data should be transferred using a protocol
like UU-encode.

10 � RS232

The example script below functions as a simple terminal. It accepts a few
commands that it receives over the first serial port. It understands the basic
commands to start playing files, to query which files are on the SD/MMC
card, and to set volume and balance.

Listing: serial.p

@reset()

{

setserial 57600, 8, 1, 0, 0

transmit "READY: "

}

@receive(const data{}, length, port)

{

static buf{40}

strcat buf, data

if (strfind(buf, "\r") >= 0 || strfind(buf, "\n") >= 0)

{

parse buf

buf = "" /* prepare for next buffer */

}

}

stripline(string{})

{

/* strip leading whitespace */

new idx

for (idx = 0; string{idx} != EOS && string{idx} <= ’ ’; idx++)

{}

strdel(string, 0, idx)

/* strip trailing whitespace */

for (idx = strlen(string); idx > 0 && string{idx-1} <= ’ ’; idx--)

{}

if (idx >= 0)

string{idx} = EOS

}

parse(string{}, size=sizeof string)

{

stripline string

new mark = strfind(string, " ")

if (mark < 0)

mark = strlen(string)

if (strcmp(string, "PLAY", true, mark) == 0)

{

/* remainder of the string is the filename */

strdel string, 0, mark

stripline string

if (!play(string))

transmit "Error playing file (file not found?)"

}

RS232 � 11

else if (strcmp(string, "STOP", true, mark) == 0)

stop

else if (strcmp(string, "VOLUME", true, mark) == 0)

{

strdel string, 0, mark

stripline string

setvolume .volume=strval(string)

}

else if (strcmp(string, "BALANCE", true, mark) == 0)

{

strdel string, 0, mark

stripline string

setvolume .balance=strval(string)

}

else if (strcmp(string, "LIST", true, mark) == 0)

{

strdel string, 0, mark

stripline string

if (strlen(string) == 0)

strpack string, "*", size

new count = fexist(string)

new filename{100}

for (new index = 0; index < count; index++)

{

fmatch filename, string, index

transmit filename

transmit "\n"

}

}

else

transmit "Unknown command or syntax error\n"

transmit "READY: "

}

Incoming data may be received character by character or in “chunks”. Espe-
cially when the data is typed in by a user, it is likely that each invocation of
@receive will only hold a single character. These characters or string seg-
ments must be assembled into whole commands. This script assumes that
there is a single command per line.

When @receive sees a line terminator (a “newline” or cr character), it
sends the complete line to the function parse that decodes it using a few
string manipulation functions. The function stripline is a custom function
that removes leading and trailing “white space” characters (spaces, tab

characters and others). The command “play” takes a parameter that follows
the keyword “play” after a space separator. To play the file “track1.mp3”

12 � Packed and unpacked strings

(and assuming that you are connected to the Starling through a simple
terminal), you would type:

play track1.mp3

The commands “volume” and “balance” also take a parameter (a number, in
this case). The command “list” optionally takes a file pattern as a parameter;
if the pattern is absent, all files on the SD/MMC card are listed (i.e. the
command “list” is short for “list *”).

For transferring binary data over RS232, you may choose to convert the

uudecode: 130
binary stream to UU-encode and transfer it as text, or to explicitly use the
length parameter in the public function @receive to determine how many
bytes have been received in binary mode. When receiving data in binary
mode, you should set up the serial port to use no software handshaking
—otherwise the bytes that represent the XON & XOFF codes will still be
gobbled internally.

The Starling software toolkit also comes with a few ready-to-run scripts,
among which is a script that implements a full serial protocol, similar to
that of professional DVD players. These scripts come with commented source
code and documentation in HTML format, and may therefore serve as (ad-
vanced) programming examples.

Packed and unpacked strings

The pawn language does not have variable types. All variables are “cells”
which are typically 32-bit wide (there exist implementations of pawn that
use 64-bit cells). A string is basically an array of cells that holds characters
and that is terminated with the special character ’\0’.

However, in most character sets a character typically takes only a single byte
and a cell typically is a four-byte entity: storing a single character per cell
is then a 75% waste. For the sake of compactness, pawn supports packed
strings, where each cell holds as many characters as fit. In our example, one
cell would contain four characters, and there is no space wasted.

At the same time, pawn also supports unpacked strings where each cell holds
only a single character, with the purpose of supporting Unicode or other
wide-character sets. The Unicode character set is usually represented as a
16-bit character set holding the 60,000 characters of the Basic Multilingual
Plane (BMP), and access to other “planes” through escape codes. A pawn

UU-encoding � 13

script can hold all characters of all planes in a cell, since a cell is typically
at least 32-bit, without needing escape codes.

Many programming language solve handling of ascii/Ansi character sets
versus Unicode with their typing system. A function will then work either
on one or on the other type of string, but the types cannot be mixed. pawn,
on the other hand, does not have types or a typing system, but it can check,
at run time, whether a string a packed or unpacked. This also enables you to
write a single function that operates on both packed and unpacked strings.

The functions in the H0420 firmware have been constructed so that they
work on packed and unpacked strings.

UU-encoding

For transmitting binary data over communication lines/channels or protocols
that do not support 8-bit transfers, or that reserve some byte values for
special “control characters”, a 6-bit data encoding scheme was devised that
uses only the standard ascii range. This encoding is called “UU-encoding”.

This daemon can encode a stream of binary data into ascii strings that can
be transmitted over all networks that support ascii.

The basic scheme is to break groups of 3 eight bit bytes (24 bits) into 4 six bit
characters and then add 32 (a space) to each six bit character which maps it
into the readily transmittable character. As some transmission mechanisms
compress or remove spaces, spaces are changed into back-quote characters
(ascii 96) —this is a modification of the scheme that is not present in the
original versions of the UU-encode algorithm.

Another way of phrasing this is to say that the encoded 6 bit characters are
mapped into the set:

‘!"#$%&’()*+,-./012356789:;<=>?@ABC...XYZ[\]^_

for transmission over communications lines.

A small number of eight bit bytes are encoded into a single line and a count
is put at the start of the line. Most lines in an encoded file have 45 encoded
bytes. When you look at a UU-encoded file note that most lines start with
the letter “M”. “M” is decimal 77 which, minus the 32 bias, is 45. The pur-
pose of this further chopping of the byte stream is to allow for handshaking.
Each chunk of 45 bytes (61 encoded characters, plus optionally a newline)

14 � Rational numbers

is transferred individually and the remote host typically acknowledges the
receipt of each chunk.

Some encode programs put a check character at the end of each line. The
check is the sum of all the encoded characters, before adding the mapping,
modulo 64. Some encode programs have bugs in this line check routine; some
use alternative methods such as putting another line count character at the
end of a line or always ending a line with an “M”. The functions in this
module encode byte arrays without line check characters, and the decoder
routine ignores any “check” characters behind the data stream.

To determine the end of a stream of UU-encoded data, there are two common
conventions:
⋄ When receiving a line with less that 45 encoded bytes, it signals the last
line. If the last line contains 45 bytes exactly, another line with zero
bytes must follow. A line with zero encoded bytes is a line with only a
back-quote.

⋄ A stream must always be ended with a line with 0 (zero) encoded bytes.
Receiving a line with less than 45 encoded bytes does not signal the end
of the stream — it may indicate that further data is only delayed.

Rational numbers

The pawn programming language supports only one data type: the 32-bit
integer, called a cell. With special operators and a strong tag, the pawn

language can also do rational arithmetic, with three decimal digits. To use
the “fixed-point arithmetic”, your script must include the file rational.inc,
for example by using the following directive:

#include <rational>

The fixed point format used in this library uses three decimal digits and
stores the values in two’s complement. This gives a range of -2147483 to
+2147482 with 3 digits behind the decimal point. Fixed point arithmetic
also goes by the name “scaled integer” arithmetic. Basically, a fixed point
number is the numerator of a fraction where the denominator is implied.
For this library, the denominator is 1000 —therefore, the integer value 12345
stands for 12345

1000
or 12.345.

In rounding behaviour, however, there is a subtle difference between fixed
point arithmetic and straight-forward scaled integer arithmetic: in fixed

Rational numbers � 15

point arithmetic, it is usually intended that the least significant digit should
be rounded before any subsequent digits are discarded; but many scaled
integer arithmetic implementations just “drop” any excess digits. In other
words, 2/3 in fixed point arithmetic results in 0.667, which is more accurate
than the scaled integer result of 0.666.

To convert from integers to fixed point values, use one of the functions
fixed or strfixed. The function fixed creates a fixed point number with
the same integral value as the input value and a fractional part of zero.
Function strfixed makes a fixed point number from a string, which can
include a fractional part.

A user-defined assignment operator is implemented to automatically coerce
integer values on the right hand to a fixed point format on the left hand.
That is, the lines:

new a = 10

new Fixed: b = a

are equivalent to:
new a = 10

new Fixed: b = fixed(a)

To convert back from fixed point numbers to integers, use the functions
fround and ffract. Function fround is able to round upwards, to round
downwards, to “truncate” and to round to the nearest integer. Function
ffract gives the fractional part of a fixed point number, but still stores this
as a fixed point number.

The common arithmetic operators: +, -, * and / are all valid on fixed point
numbers, as are the comparison operators and the ++ and -- operators. The
modulus operator % is forbidden on fixed point values.

The arithmetic operators also allow integer operands on either left/right
hand. Therefore, you can add an integer to a fixed point number (the result
will be a fixed point number). This also holds for the comparison operators:
you can compare a fixed point number directly to an integer number (the
return value will be true or false).

16

File system

The Starling accepts SD/MMC cards that are formatted as FAT16 or FAT32.
Most SD/MMC cards will already have been formatted in either of these file
systems. FAT16 is more suitable for smaller capacities (less than 256 MB)
while FAT32 is more appropriate for larger capacities.

The Starling supports subdirectories. It does not support relative paths,
however, as it has no concept of a “working directory”. All paths are relative
to the root. The Starling does not use a drive letter either —it only supports
a single drive with a single partition.

The path separator may either be a backslash (“\”, used in Microsoft Win-
dows) or a forward slash (“/”, used in Linux and other variants of unix).
These may also be used interchangeably. Note that the backslash is also
the default “control character” in pawn, so you need to double it in a stan-
dard pawn string; alternatively, you can use “raw strings”. See the pawn

“Language Guide” for details on the control character and (raw) strings.

Paths and filenames are case insensitive for the Starling. This is similar to
Windows and unlike Linux and unix.

As an example, the following pawn strings all refer to the same file (in the
same directory):

"/media/classical.mp3"

"media/classical.mp3" initial slash is optional

"\\Media\\Classical.MP3" double backslashes (normal string)

\"\MEDIA\CLASSICAL.MP3" “raw” string

‘‘/media/classical.mp3’’ unpacked string

• General file I/O

Apart from “playing” audio files, the Starling can read and write text and
binary files. This allows capabilities such as writing usage information to a
“log” file, storing settings and/or play files according to playlists.

Typically, the files that you wish to read or write are text files, and these files
are probably created or analysed on software running on desktop computers.
Operating systems differ in their conventions for file/path names (as was
discussed earlier), as well as the encoding of text files. The file I/O interface

File system � 17

addresses the encoding difference to some extent, in order to be compatible
with a wide range of files and hosts.

Due to memory restraints, the Starling can only hold two files open at any
time for scripting. The file I/O needed for playing audio files are handled
separately. That is, the script can open two files and still play audio. You
can manipulate more than two files in a single script, but only two files can
be open at any time —before accessing a third file, you must close one of
the earlier two files.

unix uses a single “line feed” character to end a text line (ascii 10), the
Apple Macintosh uses a “carriage return” character (ascii 13) and Microsoft
DOS/Windows use the pair of carriage return and line feed characters. Many
high-level protocols of the TCP/IP protocol suite also require both a carriage
return and a line feed character to end a line —examples are RFC 854 for
Telnet, RFC 821 for smtp and RFC 2616 for http.

The file I/O support library provides functions for reading lines and blocks
from a file, and for writing lines/blocks to a file. The line reading functions
are for text files and the block reading functions for binary files. Additional
functions allow you to read through a file character by character, or byte
by byte, and to write a file character by character. The character reading/
writing functions are indifferent for text versus binary files.

The line reading functions, fread and fwrite, check for all three common
line ending specifications: cr, lf and cr–lf. If a lf character follows a cr

character, it is read and considered part of a cr–lf sequence; when any other
character follows cr, the line is assumed to have ended on the cr character.
This implies that you cannot embed single cr characters in a DOS/Windows
or unix file, and neither use lf characters in lines in a Macintosh file. It is
uncommon, though, that such characters appear. The pair lf–cr (cr–lf
in the inverted order) is not supported as a valid line-ending combination.

The line writing function writes the characters as they are stored in the
string. If you wish to end lines with a cr–lf pair, you should end the string
to write with \r\n.

The line reading and writing functions support UTF-8 encoding when the
string to read/write is in unpacked format. When the source or destination
string is a packed string, the line functions assume ascii or another 8-bit
encoding —such as one of the ISO/IEC 8859 character sets (ISO/IEC 8859-
1 is informally known as “Latin-1”). Please see the manual “The pawn

18 � Filename matching

booklet — The Language” for details on packed and unpacked strings.

The block reading and writing functions, fblockread and fblockwrite,
transfer the specified number of cells as a binary block. The file is assumed
to be in Little Endian format (Intel byte order). On a Big Endian micro-
processor, the block reading/writing functions translate the data from Big
Endian to Little Endian on the flight.

The character reading and writing functions, fgetchar and fputchar, read
and write a single byte respectively. Byte order considerations are irrelevant.
These functions apply UTF-8 encoding by default, but they can also read/
write raw bytes.

Next to data transfer functions, the library contains file support functions
for opening and closing files (fopen, fclose), checking whether a file ex-
ists, (fexist), browsing through files (fexist and fmatch), deleting a file
(fremove), and modifying the current position in the file (fseek).

Filename matching

The filename matching functions fmatch and fexist support filenames with
“wild-card” characters —also known as filename patterns. The concept of
these patterns exists in all contemporary operating systems (such as Mi-
crosoft Windows and unix/Linux), but they differ in minor ways in which
characters they use for the wild-cards.

The patterns described here are a simplified kind of “regular expressions”
found in compiler technology and some developer’s tools. The patterns do
not have the power or flexibility of full regular expressions, but they are
simpler to use.

Patterns are composed of normal and special characters. Normal characters
are letters, digits, and other a set of other characters; actually, everything
that is not a special character is “normal”. The special characters are dis-
cussed further below. Each normal character matches one and only one
character —the character itself. For example, the normal character “a” in
a pattern matches the letter “a” in a name or string. A pattern composed
entirely of normal characters is a special case since it matches only one ex-
actly one name/string: all characters must match exactly. The empty string
is also a special case, which matches only empty names or strings.

Filename matching � 19

Depending on the context, patterns may match in a case-sensitive or a case-
insensitive way. Filename matching is case-insensitive, but packet matching
is case-sensitive.

Special pattern characters are characters that have special meanings in the
way they match characters in filenames. They may match a single instance
or multiple occurrences of any character, or only a selected set of characters
—or they may change the sense of the matching of the rest of the pattern.
The special pattern characters are:

? Any
The any pattern ? matches any single character.

* Closure
The closure pattern * matches zero or more non-specific characters.

[abc] Set
The set pattern [abc] matches a single character in the set (a, b,
c). On case-insensitive matches, this will also match any character
in the set (A, B, C). If the set contains the] character, it must be
quoted (see below). If the set contains the hyphen character -, it
must be the first character in the set, be quoted, or be specified as
the range ---.

[a-z] Range set
The range pattern [a-z] matches a single character in the range
a through z. On case-insensitive matches, this will also match any
character in the range A through Z. The character before the hyphen
must sort lexicographically before the character after the hyphen.
Sets and ranges can be combined within the same set of brackets;
e.g. the pattern [a-c123] matches any character in the set (a, b,
c, 1, 2, 3).

[!abc] Excluded set
The excluded set pattern [!abc] matches any single character not
in the set (a, b, c). Case-insensitive systems also exclude characters
in the set (A, B, C). If the set contains the hyphen character, it must
immediately follow the ! character, be quoted, or be specified as
the range ---. In any case, the ! must immediately follow the [

character.

{abc} Repeated set
The repeated set is similar to the normal set, [abc], except that
it matches zero or more occurrences of the characters in the set.
It is similar to a closure, but matching only a subset of all charac-

20 � INI files

ters. Similar to single character sets, the repeated set also supports
ranges, as in {a-z}, and exclusions, as in {!abc}.

‘x Quoted (literal) character
A back-quote character ‘ removes any special meaning from the
next character. To match the quote character itself, it must be
quoted itself, as in ‘‘. The back-quote followed by two hexadecimal
digits gives the character with the byte value of the hexadecimal
number. This can be used to insert any character value in the
string, including the binary zero. The back-quote character is also
called the grave accent .

Some patterns, such as *, would match empty names or strings. This is
generally undesirable, so empty names are handled as a special case, and
they can be matched only by an empty pattern.

pawn uses the zero character as a string terminator. To match a zero byte,
you must use ‘00 in the pattern. For example, the pattern a[‘00-‘1f]

matches a string that starts with the letter “a” followed by a byte with a
value between 0 and 31.

INI files

Many programs need to store settings between sessions. For this reason, the
library provides a set of high-level functions for storing the configuration
in an “INI” file. An INI file is a plain text file where fields are stored as
name/value pairs. The name (called the “key” in the function descriptions)
and the value are separated by an equal sign (“=”) or a colon (“:”) —the
colon separator is an extension of this library.

INI files are optionally divided into sections. A section starts with a section
name between square brackets.

INI files are best known from Microsoft Windows, but several unix and
Linux programs also use this format (although the file extension is sometimes
“.cfg” instead of “.ini”). Playlist files in Shoutcast/Icecast format also use
the syntax of INI files.

21

Network

The Starling Ethernet interface allows the audio controller to be connected
in a standard Ethernet network, using the TCP/IP protocol suite. The
firmware contains a set of network functions that you can use from the
script.

Apart from a few basic network control messages, no network functionality
is hard-coded in the Ethernet interface. All network functionality is under
control of the script. In its current release, the network interface supports
the TCP/IP protocol suite with the following functionality:

⋄ TCP/IP core protocols (IP version 4), including the ARP, ICMP and UDP
protocols.

⋄ Support for dynamic configuration through DHCP, and AutoIP in absence
of a DHCP server; lease times are handled.

⋄ Support for multi-cast IP addresses and group memberships.

⋄ For interoperability with MicrosoftWindows hosts, NetBIOS Name Server
requests are handled; DNS look-up is also present.

⋄ PING transmit & response handling, for network diagnostics.

⋄ SYSLOG client, for sending informational messages.

⋄ Support for the SNTP (network time) protocol for synchronizing the in-
ternal clock (the firmware supports both a time client and a time server).

⋄ Flexible and extensible SNMP agent support.

⋄ TFTP client and server for simple file transport (as well as a simple form
of “push” streaming).

⋄ HTTP client, for downloading files; HTTP server (single session) for status
or configuration.

⋄ FTP client and FTP server (single session) for file transfer.

⋄ Shoutcast / Icecast client for streaming MP3 audio from the network
(“pull” streaming).

⋄ RTP protocol for “push” streaming of MP3 audio from the network.

Usage

All scripts that use the network features must include the definition file (or
“header file”) for the network functionality. These scripts should have the
following line near the top of the script:

22 � Low-level interface

Listing: Initializing the network interface

#include <tcpip>

Before using any of the network functions, the network interface must be
initialized. This is done through the function netsetup. There are two ways
to use netsetup: you can either give only a host name and have netsetup
look up the network configuration from a DHCP server, or you can supply
all the necessary information for a “fixed addressing” scheme. Examples are:

Listing: Initializing the network interface

// host name is MP3-Ctrl; IP address, gateway, DNS and netmask are

// looked up from DHCP

netsetup .hostname = "MP3-Ctrl"

// host name is Starling, IP address = 192.168.0.123,

// gateway = 192.168.0.77, DNS = 192.168.0.99, netmask = 255.255.255.0

netsetup "192.168.0.123", "192.168.0.77", "192.168.0.99",

"255.255.255.0", "Starling"

If desired, the network can be cleaned up again with function netshutdown.
However, this is rarely needed.

When initializing the network using DHCP, note that function netsetup

returns before the DHCP handshaking is complete and the suitable addresses
have been assigned. When the network status changes —such as DHCP
completion, the script receives the event @netstatus. By implementing
this function, the script can monitor network status, network errors and
transfer progress. The function netinfo returns dynamic and static network
information.

Low-level interface

The network interface provides function for the low-level TCP/IP interface
and for a selected set of the higher level protocols. The lower level inter-
face allows to send and receive raw messages or data between the Starling
and external devices. Both the connection oriented TCP protocol and the
datagram protocol UDP are supported. For opening a connection, use the
function netconnect and for closing it use netclose. Only TCP connec-
tions need to be opened; UDP messages can be sent and received without
opening a port. For sending a message, use netsend; and incoming data will
be received by the event function @netreceive.

Low-level interface � 23

If you wish to act as a server, rather than a client, the script should call
netlisten rather than netconnect. TCP connections that are “listened”
to also need to be closed with netclose. For UDP servers, you must also
call netlisten (unless you wish to listen to the default port 9930), but there
is no need to close the connection.

Below is a skeleton of a script that implements a simple Telnet server. A
Telnet server sets up a listening connection at port 23 and exchanges text
messages with a Telnet client. The messages that a server receives are usually
commands.

Listing: Telnet server skeleton

#include <tcpip>

@reset()

{

netsetup /* configure the network using DHCP */

}

@netstatus(NetStatus: code, status)

{

switch (code)

{

case NetAddrSet:

{

/* set up a listener on successful initialization */

netlisten 23, TCP

}

}

}

@netreceive(const buffer[], size, const source[])

{

if (size == 0)

{

/* special case, remote host just connected;

* print a welcome message

*/

netsend "Welcome\r\n# ", _, source

}

else

{

/* normal case, data received */

static line[100 char]

strcat line, buffer

if (strfind(line, "\r") >= 0 || strfind(line, "\n") >= 0)

{

/* we have received a full line, process it here */

(. . . code omitted . . .)

24 � High-level interface

line[0] = ’\0’ /* prepare for next buffer */

}

}

}

The script starts with setting up a network. Since the network is set up
without any configuration options, the host must negotiate an IP address
and other options via DHCP (if available) or AutoIP. When this negotiation
ends, the script receives the @netstatus event with code NetAddrSet and
the network configuration is complete. At this point, the script can set up a
listener (function netlisten). As a side note: when using fixed addressing,
network configuration is complete immediately after the call to netsetup.

Function @netreceive gets an event if data is received. The data may arrive
character by character, or it may arrive is blocks or text lines (this is how the
Telnet protocol works). The @netreceive function must collect the blocks
of data and process any full line that is received. Any response from the
script can be sent via netsend.

Immediately after a remote Telnet client connects, @netreceive also receives
an event, but without any data. It is up to the script to decide how to
respond. For a Telnet server, it is common to print a welcome message and
a prompt.

Not shown in the skeleton is the way to close the connection. If the remote
Telnet client closes the connection, there is nothing for the script to do: the
listening socket will be notified about the closed connection. If the script
must take the initiative to closing the connection, however, it must call
netclose on the socket that was returned by the earlier call to netlisten.
If you wish to accept a subsequent (new) incoming connection after having
closed the active connection, the script should call netlisten again after
the call to netclose.

High-level interface

The firmware has built-in protocol handlers for the following services:
⋄ HTTP client netdownload

⋄ HTTP server @nettransfer

⋄ FTP client netdownload or netupload
⋄ FTP server @nettransfer

Audio streams � 25

⋄ TFTP client netdownload or netupload
⋄ TFTP server @nettransfer

⋄ Shoutcast / Icecast client netstream or play
⋄ RTP client netstream or play
⋄ Syslog client netsyslog

⋄ SNTP client netsynctime

⋄ SNTP server automatic
⋄ ICMP client (ping only) netping

⋄ ICMP server (ping only) automatic
⋄ SNMP agent @netsnmp

⋄ SNMP traps netsnmptrap

To enable a file server, the script must implement the function @nettrans-

fer. The SNTP and ICMP servers are always enabled, and they allow a
host on the network to query the time of the Starling device and to “ping”
the Starling. Function netdownload allows to download from HTTP, FTP
and TFTP servers. The function gets the protocol to use from the URL.

When you call the functions netsynctime or netping, the reply of the re-
mote host is received as an event, through @netstatus. The functions net-
synctime and netping are asynchronous: they return immediately (before
a reply from the remote host is received).

Audio streams

The Starling can play audio that is streamed to the device. There are three
protocols for streaming: direct streaming via RTP, buffered streaming with
a progressive HTTP protocol (e.g. Shoutcast), and buffered streaming via
standard HTTP.

• Progressive HTTP versus standard HTTP

Progressive and standard HTTP streaming have are similar in that the script
uses functions play or netstream in both cases and that a stream queue
must be prepared in both cases.

There are also important differences. To begin with, the server set-up is
different: you need a HTTP server for standard HTTP streaming and a
Shoutcast/Icecast server for progressive HTTP. Standard HTTP streams
play MP3 files over the network, from start to finish —you do not have

26 � Audio streams

the option start at an arbitrary position in the file. The “standard” HTTP
streaming is therefore not suitable for live streaming.

The main advantages of standard HTTP streaming are that HTTP servers
are more readily available (e.g. in “shared hosting” accounts) than streaming
audio servers, and that standard HTTP streaming allows the client (i.e. the
“web radio”) to choose the tracks to play; a progressive HTTP stream plays
back what the server pushes into the channel.

• Streaming with progressive HTTP

The most common streaming method is a variation on the protocol used by
all web browsers (Mozilla Firefox, Internet Explorer, Opera, etc.): the HTTP
protocol. For MP3 streaming, ubiquitous stream servers are Shoutcast and
Icecast, both of which use the progressive HTTP protocol.

Progressive HTTP is more suitable for streaming over a WAN or the Internet
because it is buffered in a “stream queue”. You can optionally also monitor
the queue status to decide when to start playing the stream.

Like standard HTTP, progressive HTTP is a “pull” protocol: the Starling
initiates the connection to a stream server.

You connect to a stream with the function netstream or function play.
Both functions start filling the stream queue and both start playing audio
from the stream queue when it reaches a certain level. Function netstream

allows you to specify how many kilobytes must be in the stream queue before
starting to play the stream (function play fixes this at 128 KiB). In addition,
netstream can buffer (or re-buffer) a stream while audio is still playing —
play will stop audio output before starting up the stream.

With netstream, you can select at which queue level you wish to start
playing the stream. When you wait until the stream queue is 256 KiB
full, you are relatively insensitive to network stalls (due to congestion or
bad reception), but there is a high “latency” between the connection to the
stream and the audio actually coming out of the speakers. This latency is
because the queue needs to be filled first. You can choose to reduce the
latency by starting to play the stream at a queue level of 32 KiB, at the risk
that a network stall causes a gap in the audio or a disconnection from the
stream.

Audio streams � 27

The number of seconds in the stream queue depends on the amount of data
in the queue and the bit rate. At the common MP3 bit rate 128 kb/s, the
player processes 16,000 bytes per second.

A Shoutcast server will typically enter “burst mode” immediately after es-
tablishing a connection. In burst mode, the server sends up to 256 KiB
as quickly as possible, and then switches to stream mode where the transfer
speed is equivalent to the audio bit rate. Although newer Icecast servers also
use burst mode, an older Icecast server streams at the speed of the audio
bit rate from the very beginning. If you know that you are connecting to an
old Icecast server, you may wish to fill the queue to 256 KiB before starting
to play the stream. Similarly, for a Shoutcast server, you may start to play
at a queue fill level of 64 KiB, because the queue will grow quickly in burst
mode. If you do not know what server the device connects to, waiting until
a fill level of 128 KiB is a fair trade-off: it is a safe margin for an Icecast
server, and not cause a great delay for a Shoutcast server —it fills the queue
to this level quickly anyway, because of burst mode.

With function play, all that is required is that you pass in an URL to the
stream. The URL prefixes “http://” and “icy://” are equivalent, except
that the default port number for “http://” is 80 and that for “icy://” is
8000.

Listing: Streaming with HTTP

play "icy://224.82.71.81:8080/"

The Starling supports meta-data in the stream. This meta-data is textual
data, usually containing the title of the song and the name of the artist or
the band, that the streaming server inserts into the audio stream at regular
intervals. When a stream is playing, a script can retrieve that data from the
function trackinfo.

• Restarting a HTTP stream

The netstream function is more specialized than function play for stream-
ing: it has a parameter for the amount of data (in KiB) in the stream queue
before playing starts and it can start buffering a stream while audio is still
playing. The previous section already discussed the relation between the
queue fill level and audio latency. This section focuses on the second feature
—which is particularly useful for reliable streaming from progressive HTTP
servers (Shoutcast/Icecast servers).

28 � Audio streams

HTTP is a simple protocol on top of TCP. There are no particular reasons
why a TCP connection may not be kept open indefinitely, but the protocol
was not designed for continuous never-ending transfers. In practice, TCP
connections get dropped on occasion. This may happen, among other rea-
sons, because of server load or time-outs in NAT routers, a gateway in the
middle (a “hop”) that goes off-line, or a host switching to a different network
(this happens with mobile devices that are “on the road”).

When the Starling is playing a stream and the connection for the stream gets
disrupted, the Starling will continue to play the remainder of the audio in
the stream queue. No new data will arrive into the queue, however. The only
way to “fix” a broken connection is to set up a new connection and restart
the stream. The advantage that netstream has to play in this situation is
that netstream can continue to play the remainder of the stream while the
stream is restarted. In other words, netstream avoids (or at least minimizes)
a silent gap during the re-opening of the stream.

The following code snippet illustrates a the concept:

Listing: Monitoring and restarting a HTTP stream

const StreamUrl[] = "icy://192.168.1.22"

const StreamBufferLimit = 128

@main()

{

netsetup

settimer 1000

}

@timer()

{

static StartDelay = 0

const LowBufferLimit = StreamBufferLimit / 4

if (netinfo(LinkStatus) != 0 && netinfo(GatewayIP) != 0)

{

if (StartDelay == 0 && netinfo(StreamQueue) < LowBufferLimit)

{

StartDelay = 10

netstream StreamUrl, StreamBufferLimit

}

}

if (StartDelay > 0)

StartDelay--

}

Audio streams � 29

The script initializes a timer. The event function @timer checks whether
network is ready. The script assumes that a DHCP server is present, so that
it will have a gateway address once the DHCP handshake completes.∗ The
first time that it drops through the first “if” that checks the LinkStatus

and the GatewayIP, the fill level of the stream queue is zero bytes. It will
therefore drop through the second “if” as well and start the stream. It also
sets a local variable, StartDelay, because on the next timer event —one
second later, the stream has just started and the stream queue may not
have received the first 32 KiB of the stream data yet.† We should give the
stream a chance to fill the queue. Hence, the script makes sure that it does
not restart a stream within 10 seconds since the last start.

When the stream is playing, the queue fill level will normally stay relatively
stable, and that level will be either close to the queue limit set in function
netstream, or it may be higher if the streaming server uses a burst mode
to a higher fill level. If the stream queue fill level drops below 25% of the
level set in netstream, the connection probably has a problem. The script
detects this situation and restarts the stream.

If a reconnection succeeds, the Starling picks up the stream from the server
again. If the reconnection was quick enough to avoid the stream queue to
empty completely, there will be no gap in the audio (i.e. no silent period).
However, due to the buffering scheme of progressive HTTP streaming, the
position in the track where the stream is picked up will not match precisely
the position where the connection was broken. As a result, there will be a
glitch in the audio shortly after the successful reconnection.

Restarting a stream is only useful when the server uses burst mode. If the
server does not use burst mode, the stream queue receives new data at the
bit rate of the audio, which means that the stream queue cannot grow and
play at the same time. Restarting a stream is also only useful for progressive
HTTP streaming: when restarting a standard HTTP stream, the stream
restarts from the beginning of the track, which is not what you want.

∗
an alternative would be to implement the @netstatus function and wait for the NetAddrSet

event, see page 23.

†
Since StreamBufferLimit is defined at 128 KiB, StreamBufferLimit divided by 4 is 32 KiB.

30 � Audio streams

• Tips for progressive HTTP streaming

⋄ To keep playing a local track while the stream queue fills up, use net-

stream instead of function play.

⋄ To detect a disconnection from the stream, implement the event function
@audiostatus and watch for the “Stopped” signal. If this signal arrives
and you were streaming, the stream was disconnected.

⋄ While playing a stream, you can also monitor the fill level of the stream
queue with function netinfo and call netstream on the same stream again
when it drops below a certain level. Doing this refreshes the stream.

⋄ To signal a failed connection to a stream:

a) check the return value of netstream; it returns false if it cannot
connect to the server;

b) @netstatus gets the event NetStreamBuffer with status 0 (stream
queue 0% full), which means that the remote stream server replied
with an error or reset the connection.

⋄ To monitor the level to which the stream queue is full, call netinfo with
code StreamQueue.

⋄ To abort a stream, call netstream(""). This stops the stream. The audio
will continue playing for a few seconds, because there is likely still data
in the stream queue. You can wait until it runs out, or call the function
stop.

• Streaming with RTP

The “Real-time Transport Protocol” (RTP) is designed for quick transfer of
multimedia data, where transfer speed is more important than integrity of
the data. Occasionally, a packet with audio information may get lost with
RTP. On the other hand, latency is much lower than in reliable transport
protocols such as HTTP and the protocol overhead is lower too —which
also reflects in lower bandwidth requirements. RTP is furthermore a suit-
able protocol for multi-casting, which may significantly reduce bandwidth
requirements.

There are various devices that can stream audio data onto the network using
RTP. A PC application (on Microsoft Windows) that creates an RTP stream
from MP3 tracks is “LiveCaster”.

Transferring files � 31

RTP is a non-buffered “push” protocol. To play an RTP stream, the script
can call the standard function play with an RTP URL instead of a file-
name. Alternatively, the script can call netstream for more control. For
example, the following snippet starts playing the stream from the server at
“224.82.71.81” on port 56952:

Listing: Streaming with RTP

play "rtp://224.82.71.81:56952/"

No standard port is defined for the RTP protocol, which is why you usually
have to give an explicit port number. If you omit the port, the Starling uses
port 5004 for RTP packets.

The controller automatically detects multi-cast addresses and sends out a
multi-cast group announcement for the service if needed. If the remote
address is an unicast address, no group announcement is sent.

The Starling controller is compatible with the Barix extension of the RTP
protocol, where the host has to request the stream from the server first. The
Barix RTP variant is often better able to get audio data through a NAT
router than the standard RTP protocol, but it may be limited to unicast
applications. To use the Barix RTP variant, specify the protocol prefix
“brtp://” in the play command (instead of “rtp://”).

Transferring files

The script supports the HTTP protocol for downloading files from a web
server and the FTP and TFTP protocols for downloading and uploading
files from and to a FTP/TFTP servers. Authenticated file transfers are only
supported on the FTP protocol. The TFTP client in the Starling requires
a server that supports TFTP options, notably the “transfer size” option.
Modern TFTP servers support options.

To initiate the file transfers, the script uses the functions netdownload and
netupload. These functions are asynchronous, meaning that the function
returns before the file transfer is complete. Once the transfer completes, the
script receives an event through the @netstatus function —the respective
event codes are NetHttpDone, NetFtpDone and NetTftpDone.

These functions initiate the file transfer and thereby act as a “client”. The
script can also wait for an incoming request (from a remote host) to transfer

32 � Monitoring and configuration with SNMP

a file, by setting up a server. See the section “HTTP, FTP and TFTP
servers” on page 35 for this functionality.

Monitoring and configuration with SNMP

SNMP stands for “Simple Network Management Protocol”. This protocol
allows remote monitoring and configuration of network devices. For this
to work, the network device must be equipped with an SNMP agent. To
implement an SNMP (version 1) agent in the Starling, you need a script
that contains the @netsnmp function and a MIB file.

With SNMP, a manager sends out queries at regular intervals to request the
status of one or more variables of one or more devices. The A query may
also contain a new value for a variable. Each device contains an SNMP agent
that receives the queries and responds to it. This is the task of the @netsnmp
function: return and optionally change values of requested parameters.

SNMP works with “communities”, where the name of a community functions
as a password. The SNMP browser sets the community name and the SNMP
agent decides whether that community name is given read or write access
—or neither. See function @netsnmpcfg to set community strings for the
SNMP agent in the Starling.

For reasons of efficiency, SNMP exchanges all device variables as numbers.
So 1 may stand for “device status” and 12 for “current volume setting”.
An SNMP browser or SNMP manager that you use on your workstation
to control the device shows the same variables with their names. To map
“magic” numbers to human-readable names (and vice versa), the SNMP
browser/manager needs a MIB file.

The MIB (“Management Information Base”) file is a plain text file that
contains the definitions of the settings that the Starling controller can return.
These settings depend on the script. You can build a script that allows a
user to select tracks, set volume and balance and other audio parameters,
or build a script that allows a user to query information such as up-time,
network traffic and recent status changes. The script, and in particular the
event function @netsnmp, determine how the Starling controller responds to
queries and which requests it supports.

Obviously, the definitions in the MIB file must be in conformance with the
implementation of the @netsnmp function in the script. Part of the MIB

Monitoring and configuration with SNMP � 33

file needed for the Starling is fixed, but another part is flexible because the
scripting capabilities of the Starling are flexible too.

• The MIB file

The template MIB file, onto which you will base your specific MIB files is
below. You will find this template MIB file on the CD-ROM that comes
with the product (in the “examples” subdirectory).

Listing: Template MIB file

--

-- A template SNMP MIB file for use with the Starling

--

-- Copyright (c) 2007-2012 ITB CompuPhase

--

-- ==

-- This part should remain unchanged

-- ==

COMPUPHASE-MIB DEFINITIONS ::= BEGIN

IMPORTS

enterprises, IpAddress, Counter, TimeTicks

FROM RFC1155-SMI

OBJECT-TYPE

FROM RFC-1212;

DisplayString

FROM RFC-1213;

compuphase OBJECT IDENTIFIER ::= { enterprises 28388 }

products OBJECT IDENTIFIER ::= { compuphase 1 }

starling OBJECT IDENTIFIER ::= { products 21 }

-- ==

-- The part below is specific to the application, and it must be

-- in conformance with the script

-- ==

-- Add your definitions here...

-- ==

-- End of the application-specific definitions

-- ==

END

34 � Monitoring and configuration with SNMP

The definitions in the MIB file are written in “Abstract Syntax Notation
One”, or ASN.1. Information on the ASN.1 syntax can be found in various
books and on the Internet, including tutorials and the original definitions in
RFCs.

When writing the MIB file, please note that the implementation of the SNMP
agent in the Starling only supports whole numbers and (octet/character)
strings. The Starling does not support “sequence” types for user data. In the
MIB file, you may also use derived types as Counter, Gauge, TimeTicks and
IpAddress, which are basically different representations of integer values.

Below is a very brief implementation of the @netsnmp function. It handles
only two fields: the title of the track currently playing (this is a read-only)
property and the volume level —a read-write property.

Listing: Minimal SNMP agent

@netsnmp(item, data[], size)

{

switch (item)

{

case 1: // title, read-only

trackinfo TrackTitle, data, size

case 3:

if (size == 0)

setvolume strval(data)

else

{

new value

getvolume value

strformat data, size, true, "%d", value

}

default:

return false

}

return true

}

The definitions to put in the MIB file are below (these definitions must be
merged in the template MIB file, see page 33):

Listing: MIB file extract, matching the above minimal SNMP agent

title OBJECT-TYPE

SYNTAX OCTET STRING

ACCESS read-only

STATUS mandatory

DESCRIPTION "Track title"

::= { h0420 1 }

HTTP, FTP and TFTP servers � 35

volume OBJECT-TYPE

SYNTAX INTEGER(0..100)

ACCESS read-write

STATUS mandatory

DESCRIPTION "Audio volume (0..100)"

::= { h0420 3 }

HTTP, FTP and TFTP servers

To enable the built-in HTTP, FTP and/or TFTP servers, the script must
implement the @nettransfer function. The HTTP, FTP and TFTP pro-
tocols are file transfer protocols. The FTP and TFTP servers allow read
and write requests, while the HTTP server only supports read requests (i.e.
“downloads” or page views). Only the FTP server requires a log-in before
allowing file transfers. The script may optionally also implement the @net-

status function to receive an event on the completion of the transfer.

To have the script initiate the file transfer itself, rather than wait for an
incoming request, see section “Transferring files” on page 31.

The purpose of the @nettransfer function is to let the script either allow
or refuse the request. In the case of a HTTP server, the script may also
process any parameters on the URL (before acknowledging or cancelling the
transfer).

• TFTP server

The following implementation of @nettransfer enables the TFTP server,
but cancels any HTTP requests that it receives. Read and write requests
are accepted in the “user” subdirectory, and cancelled for other areas on the
memory card of the Starling.

Listing: Handling TFTP requests

bool: @nettransfer(path[], NetRequest:code, socket)

{

/* HTTP requests are denied (only accept HTTP requests) */

if (code != NetTftpGet && code != NetTftpPut)

return false

/* only up/downloading to/from "user" is allowed */

if (strcmp(path, "user/", true, 5) != 0)

return false

36 � HTTP, FTP and TFTP servers

return true /* allow this transfer */

}

TFTP has no concept of a “current directory”. Instead, the full path of the
filename to “put” or to “get” must be specified. Some TFTP clients allow
you to type in only a single name, for both the source and the destination.
This is inconvenient if you wish to transfer a file to or from a different
directory on the PC than on the memory card of the Starling. A free TFTP
client that allows separate paths and names for the local and remote hosts
is tftpd32 by Philippe Jounin.

The TFTP server in the Starling requires a client that supports TFTP op-
tions, notably the “transfer size” option. Modern TFTP clients support
options, but the command line “tftp” utility that comes with Microsoft
Windows does not. For a free alternative (which supports options), see the
TFTP command line client by WinAgents.

• HTTP server

From the viewpoint of the pawn script is a web server very similar to a TFTP
server. For a HTTP server, you also need to implement the @nettransfer

function, but now enabling the HTTP requests instead of (or in addition to)
the TFTP requests.

HTTP clients, such as a browser like Mozilla Firefox or Microsoft Internet
Explorer, may pass parameters to a server accompanying the request. The
Starling supports URL parameters on “get” requests and passes the full
URL to the @nettransfer function. In @nettransfer, you can process and
save these parameters. The browser may then obtain the processed results
with a subsequent file transfer or through an embedded request using the
XMLHttpRequest method supported by most browsers.

Listing: Handling HTTP requests

bool: @nettransfer(path[], NetRequest:code, socket)

{

if (code != NetHttpGet)

return false /* deny non-HTTP transfers */

HTTP, FTP and TFTP servers � 37

/* get and save any parameters */

new idx = strfind(path, "?");

if (idx >= 0)

{

new params[100 char]

strmid params, path, idx + 1

/* write the parameter in a file (without further processing) */

new File: handle = fopen("params.txt", io_write)

if (handle)

{

fwrite handle, params

fclose handle

}

}

return true /* allow this transfer */

}

The script presented above saves any parameters into a text file, without
processing the parameters in any way. If you do not plan to handle URL
parameters, you can remove the entire section —making the @nettransfer

as simple as:

Listing: Handling HTTP requests ignoring any URL parameters

bool: @nettransfer(path[], NetRequest:code, socket)

return (code == NetHttpGet) /* allow HTTP, deny TFTP */

• FTP server

Like the HTTP and TFTP servers, the FTP server passes through the @net-
transfer function. In the implementation of this function in the pawn

script, it must respond to several FTP requests. The FTP protocol has a
login handshake, and it allows you to set one or more usernames and pass-
words for all users that you wish to grant access. Only one user can be
connected to the FTP server at a time.

After login, the @nettransfer function may also allow or block any file
transfer command (upload or download) as well as file deletion. In addition,
the FTP server supports the site command, which you can use to send
arbitrary commands to the script from within an FTP client (not all FTP
clients support the site command).

38 � HTTP, FTP and TFTP servers

Listing: Handling FTP requests

bool: @nettransfer(path[], NetRequest:code, socket)

{

switch (code)

{

case NetFtpLogin:

{

/* read the username:password string from an INI file */

new ftplogin[30 char]

readcfg .key="ftplogin", .value=ftplogin, .pack=true

/* accept a matching login, or accept all logins if

* no username:password was set in the INI file

*/

return strlen(ftplogin) == 0 || strcmp(path,ftplogin) == 0

}

case NetFtpGet, NetFtpDelete, NetFtpPut:

return true /* accept all file commands */

case NetFtpCmd:

if (strcmp(path, "RESET") == 0)

{

reset /* host command = "SITE RESET" */

return true

}

}

return false /* deny all non-FTP transfers */

}

39

Development and debugging

Reducing memory requirements

The Starling has 16 KiB of memory available to scripting. This limit is
declared in the h0440.inc file, so that the pawn compiler is aware of this
limit and can (hopefully) verify that the script fits into the memory. If the
pawn compiler complains that the script is too large, you must find a way
to reduce the size of the script after compilation.

⋄ If performance is not critical, switch on code overlays. Overlays set a
maximum size of 4 KiB per function, but the number of functions is un-
limited. To enable code overlays, set the option “-V” on the command
line for the pawn compiler, or check the “overlay code generation” option
in the Quincy IDE.

⋄ Some space will be gained if you compiled without run-time checks. To
do so, add the option “-d0” on the command line for the pawn compiler,
or set the “debug level” option to zero in the Quincy IDE. This removes
array bounds checks and assertions.

⋄ Make sure that the optimization level is set to “3”; the pawn compiler
generates more compact code. The relevant option is “-O3”. Note that
this option is set by default.

⋄ See if there is similar code repeated several times in the script. Such code
could then be put in a separate function, and this function is then re-used
for every routine needing the code.

⋄ At a smaller scale, if the same value gets calculated several times in a func-
tion, declare instead a new variable that holds this calculated value. The
academic terminology for replacing common sub-expressions with helper
variables is strength reduction.

⋄ Verify the stack usage (use the option “-v” of the compiler; optionally use
“-r” to get a detailed report). If the compiler reports that there is ample
unused stack space, you may reduce the size of the stack with the compiler
option “-S” or adding a “#pragma dynamic” in your script —the latter
is probably more convenient, as you do not have to remember to add an
option to the command line at each compile.

40 � Finding errors (debugging)

⋄ If you use strings, make sure that these are packed strings. Packed strings
take less space on the stack and/or heap. Literal strings also take less
space in the “literal pool” of the script.

⋄ When a function has an array parameter (such as a string) with a default
value, declare the parameter as “const” if possible. With a non-const
parameter, a copy of the default value of the parameter must be made on
the stack, because the function should not be able to change the default
parameter. Declaring the parameter as const allows the compiler to avoid
this copy.

If a script still does not fit in the available memory, it must be split into
separate scripts, where each script performs a different task. The scripts
can switch to other scripts (and thereby to other tasks) through the exec

function.

Finding errors (debugging)

If a script behaves in an unexpected (or undesired) way, there are various
methods to see which code is responsible for the behaviour.

If you have an RS232 cable attached to the Starling, you can send messages
and values of variables over the serial line. These messages can then be
inspected while the program is running. See the functions setserial and
transmit in this reference for setting up a serial connection on pages 107
and 129 respectively.

The pawn toolkit comes with a source level debugger that supports “remote
debugging”, meaning that the debugger controls the script running on the
Starling from a host PC. The remote debugging facility also uses the serial
line, but it sets it up automatically. To use remote debugging, follow these
steps:

⋄ If you are using the Quincy IDE, make sure that the IDE is configured for
remote debugging. In the “Options. . .” dialog (under the “Tools” menu),
choose the tab-page “Debugger” and select the serial port to use (e.g.
COM1:).

⋄ Compile the script with full debug information (compiler option “-d2” or
select “debug level” 2 from the Quincy IDE) and store the compiled script
on the SD/MMC card.

Transferring scripts over RS232 � 41

⋄ Also keep the compiled script and its source code on the local PC. It is
assumed that the script resides on a local hard disk of your PC while you
edit and build it, and that the resulting compiled script (the “.amx” file)
is then transferred to the SD/MMC card.

⋄ If you are using the Quincy IDE, you have to set a breakpoint in the
source code, otherwise the IDE will not launch the debugger. Once the
breakpoint is set, select the option “Run” from the menu/toolbar (or press
F5).

If not using the Quincy IDE, launch the pawn debugger separately, with
the filename of the compiled script and the option “-rs232”. Assuming
that the compiled script is called “startup.amx”, the command line is:

pawndbg startup.amx -rs232

This assumes that you are using the first serial port (“COM1:”) on the
host PC. If you use the second serial port, use:

pawndbg startup.amx -rs232=2

on Microsoft Windows and
pawndbg startup.amx -rs232=1

on Linux or unix. Note that the serial ports are numbered from zero in
Linux —ttyS1 is what Microsoft Windows would call COM2:.

⋄ Insert the SD/MMC card in the Starling and optionally reset (or power-
cycle) the device. The debugger should now display the first line of func-
tion @reset.

When the Starling is reset and the script that it loads has debug information,
it waits for a debugger to connect, with a timeout of one second. If no
debugger connects, the Starling runs the script without debugger support.
This is why it is advised to start the debugger before resetting the Starling.

After the script has been fully debugged, you will want to recompile it with-
out debugging support: it avoids the start-up delay (when the Starling polls
for a debugger to connect), and it reduces the size of the script and increases
performance.

Transferring scripts over RS232

The script for the Starling must reside on the SD/MMC card (in the root
directory). For simple scripts, it is easy to write the script, compile it and

42 � Transferring scripts over RS232

copy the resulting “.amx” onto the SD/MMC card. To copy the file, you
can use a common “card reader” that branches on an USB port.

During development and debugging, with many “write/compile/copy/test”
cycles, constantly swapping the SD/MMC card between the Starling audio
player and the card reader on the PC may become a nuisance. An alternative
is to transfer the .amx file over a serial line. The function to transfer files
over the serial line works through the debugger or from inside the Quincy
IDE. The debugger/IDE is able to synchronize with the Starling audio player
if the compiled script contains debugging information, or after a reset.

The first step is to compile the script as usual. If you are using the Quincy
IDE, choose then option Transfer to remote host from the Debug menu. If not
using the Quincy IDE, launch the debugger with the compiled script name,
as described in the previous section. Then, you need to reset the Starling,
either by pressing the “reset” switch on the board or by power-cycling the
device.

With the Quincy IDE, the transfer will now proceed automatically, but with
the stand-alone debugger, you will need to give the command “transfer”
to send the latest release of the .amx file to the Starling, which will then
write it onto the SD/MMC card. After the copy is complete, the Starling
will automatically restart, and the debugger restarts too.

If transferring the compiled script is the only purpose of launching the de-
bugger, you may also give the transfer command as a command line option.
For instance, the line below starts the debugger, transfers the file and then
exits:

pawndbg transfer.amx -rs232=1 -transfer -quit

Especially for purposes of uploading compiled scripts, it can be useful to have
the Starling reset on a command that comes over the same RS232 line —
because the Starling audio player only picks up a debugger synchronization
attempt within a second after a reset. A convenient hook is in the example
below: the @reset function sets up the serial port with a Baud rate of 57600
bps and the @receive function responds to the ’ ¡’ character (ASCII 161).
These Baud rate and synchronization command are the same as used by
the pawn debugger, meaning that in attempting to synchronize with the
debugger support in the Starling audio player, the pawn debugger will reset
the audio player if it was not polling for the debugger.

Transferring scripts over RS232 � 43

Listing: Reset the Starling player on receiving a ’ ¡’ on the RS232

@reset()

{

setserial 57600

}

@receive(const string{}, length, port)

{

if (string{0} == ’\xa1’)

reset

}

44

Public functions

@alarm The timer alarm went off

Syntax: @alarm()

Returns: The return value of this function is currently ignored.

Notes: The alarm must have been set with setalarm.

After firing, the alarm is automatically reset.

See also: @timer, setalarm

@audiostatus The audio status changed

Syntax: @audiostatus(AudioStat: status, decoder)

status The new audio status.

decoder The decoder that is the source of the event. On
devices with only a single decoder, this parame-
ter is always 1.

Returns: The return value of this function is currently ignored.

Notes: The status is one of the following:
Stopped (0)

The audio is stopped.
Paused (1)

The audio is paused and can be resumed.
Playing (2)

The audio is currently playing.
FadeCompleted (5)

The volume fade (started with setvolume) has com-
pleted.

In special circumstances, you may receive a “Stopped” no-
tification without receiving a “Playing” signal earlier. This
happens in particular when a file that was passed to function
play did not contain valid audio data.

See also: audiostatus, play, pause, resume

@input � 45

@eject The card is removed

Syntax: @eject()

Returns: The return value of this function is currently ignored.

Notes: This function is called when the SD/MMC card is removed
(“ejected”). After completion of the @eject function, the Star-
ling controller performs a reset in approximately one second.

If you need to store data or status information on eject, you
need to store such information in the configuration area of the
of the Starling itself —see storeconfig. You cannot write de-
vice data or status information to the SD/MMC card (because
it is “ejected”. . .)

See also: storeconfig

@input A digital pin changed

Syntax: @input(pin, status)

pin The pin number, see the notes.

status The new logical level (0 or 1).

Returns: The return value of this function is currently ignored.

Notes: Some models of the Starling controller have 8 I/O pins (e.g.
model H0440), other models have 16 I/O pins. On models
with 8 I/O pins, the pin parameter is a value between 0 and 7
for the normal I/O pins; on models with 16 I/O pins, the pin
parameter is a value between 0 and 15. However, the “func”
switch is assigned pin number 16 (regardless of the model of
the Starling).

Only the pins that are configured as “input” can cause this
event function to execute. See configiopin for configuration.
On start-up, all pins are pre-configured as inputs.

This function is invoked when the logical level of an input
pin changes. The function getiopin may be used to read the
active status of a pin.

46 � main

See also: configiopin, getiopin

main Script entry point

Syntax: main()

Returns: The return value of this function is currently ignored.

Notes: main is an alternative name for function @reset.

See also: @reset

@netreceive A data packet is received

Syntax: @netreceive(const buffer[], size, const source[])

buffer The data received. Depending on the protocol,
this may be text or numeric data. See the notes,
below, for details.

size The size of the data in buffer, in cells. Each
cell holds four bytes or four characters. This
parameter may be zero on a “passive connect”,
see the notes, below.

source For UDP connections, this field is the IP ad-
dress and the port number of the sender, where
the IP address and the port are separated by
a colon (for example: “192.168.10.29:9930”).
For TCP connections, this field is a “#” followed
by the socket number returned by netlisten.

Returns: The return value of this function is currently ignored.

@netsnmp � 47

Notes: If the received data is ascii text, parameter buffer holds
a packed string that may not be zero-terminated. Use the
size parameter to determine the number of cells of data in
the buffer. If the received data is not text, it is assumed to
consist of 32-bit values that are send in “network byte order”
(Big Endian).

Before being able to receive packets, the script should call net-
connect to open a connection, or call netlisten to allow a
remote host to connect.

When the script is listening on a TCP socket and a remote
device connects to this socket (i.e., a passive connect), the
@netreceive function is called with the size parameter set
to zero. A script can use this special case to send a greeting
message to the remote host on connect.

Example: See the Telnet server (skeleton) on page 23.

See also: netlisten

@netsnmp An SNMP request is received

Syntax: bool: @netsnmp(item, data[], size)

item The numeric identifier of the item.

data Either the new data to write to the item (SET
request), or the buffer to read the current value
of the item into (GET request).

size If zero, this is a SET request and data is a zero-
terminated string that holds the new data for
the item. If non-zero, this is a GET request and
this parameter holds the size of the data array
in cells.

Returns: The function should return true if it can fulfil the request and
false on failure. In particular, if item has an unknown or
unsupported value, this function should return false.

48 � @netstatus

Notes: The same function is used for querying parameters and for
setting them. The distinction between the two operations is
in the size parameter. If it is zero, the request is a SET
operation; otherwise it is a GET operation.

The contents of parameter data may be a text string, a num-
ber or an IP address, depending on the definition of the item.
For SET requests, numbers and IP addresses are encoded as
text strings. For GET requests, the script should store the
requested information in parameter data as a text string.

The definition of the type of each item is in the MIB file. It is
the responsibility of the programmer to have a matching MIB
file to the implementation of this @netsnmp function.

Example: See the code and associated MIB snippets on page 34.

See also: netsnmptrap

@netstatus Network status changed/event occurred

Syntax: @netstatus(NetStatus: code, status)

code The code of the event or status change; it is one
of the following:

NetLink (0)
Physical link status; parameter status
is 0 (disconnected) or 1 (connected).

NetPing (1)
Ping reply (see netping); parameter
status is ping sequence number.

NetAddrSet (2)
The IP address is set; this code is useful
for DHCP configuration because is sig-
nals that the network is ready for send-
ing and receiving packets; parameter
status holds the IP address as a 32-bit
integer value.

@netstatus � 49

NetTimeSync (3)
The Starling clock synchronized with a
remote host (this time is in UTC, you
may need to adjust the clock for the
time zone or daylight saving time); pa-
rameter status is 0.

NetLeaseExp (4)
The DHCP lease is expired or the link-
local lease is expired; parameter status
is 0.

NetTftpDone (5)
TFTP transfer has finished; parameter
status is 1 on success and 0 on failure.
A failure may also indicate a transfer
that has been aborted (by the user or by
the remote server).

NetHttpDone (6)
HTTP transfer has finished; parameter
status is 1 on success and 0 on failure.
A failure may also indicate a transfer
that has been aborted (by the user or by
the remote server).

NetStreamQueue (7)
Stream queue mark reached; parameter
status is the level (in kilobytes), it is
zero if the remote server rejected the
stream request.

NetFtpDone (8)
FTP transfer has finished; parameter
status is 1 on success and 0 on failure.
A failure may also indicate a transfer
that has been aborted (by the user or by
the remote server).

status The value associated with the status, its meaning
depends on the event code.

Returns: The return value of this function is currently ignored.

50 � @nettransfer

Notes: Link-local addresses have a fixed lease of 10 minutes. DHCP
leases depend on the configuration of the DHCP server.

Example: See the Telnet server (skeleton) on page 23.

See also: netclose, netinfo, netping, netsetup, netstream,
netsynctime

@nettransfer A file transfer request was received

Syntax: bool: @nettransfer(path[], code)

path The full path to the requested file, for HTTP this
may include any parameters. The script may
modify this parameter, which is useful for redi-
recting a file, for example.

code The code of the event or status change; it is one
of the following:
NetTftpGet (1)

The remote host requests to receive this
file from the Starling, using the TFTP
protocol.

NetTftpPut (2)
The remote host requests to transmit this
file to the Starling, using the TFTP pro-
tocol.

NetHttpGet (3)
The remote host requests to receive this
file from the Starling, using the HTTP
protocol.

NetFtpLogin (5)
The remote host requests to log in as an
FTP user. The path parameter contains
the username and the password, which are
separated with a colon (“user:password”).

NetFtpGet (6)
The remote host requests to receive this
file from the Starling, using the FTP pro-
tocol.

@nettransfer � 51

NetFtpPut (7)
The remote host requests to transmit this
file to the Starling, using the FTP proto-
col.

NetFtpDel (8)
The remote host requests to delete this
file from the Starling server (using the
FTP protocol).

NetFtpCmd (9)
The remote host has sent a site com-
mand. The path parameter contains the
text of the site command, excluding the
keyword site.

Returns: The function should return true if it can fulfil the request and
false on failure.

Notes: On a GET request, if the file cannot be found, the TFTP,
HTTP or FTP server in the Starling will always return an ap-
propriate error code. It is not necessary to verify the presence
of the files.

Any parameters on the URL, for a HTTP request, may be
used by the script to adjust settings. Web forms often use
parameters on the URL to pass data from the client to the
server.

If you do not implement this function, all TFTP, HTTP and
FTP server requests are denied. The FTP server can only han-
dle one user at a time. A login request while there is already
a connection open is denied. Some modern FTP clients issue
a second (or third. . .) login for every file transfer; this option
must be disabled for the FTP server in the Starling.

Example: See the code snippets on page 35 and page 36.

See also: netdownload, netupload

52 � @receive

@receive Data from RS232 is received

Syntax: @receive(const data{}, length, port)

data The data received. The array may contain one or
more characters. A final zero-byte is appended
to the end.

length The number of bytes received. The zero-byte
appended to the data array is not included in
this count.

port The port number of the serial port on which the
data is received. On devices that support only a
single port, this parameter is always 1.

Returns: The return value of this function is currently ignored.

Notes: If you are expecting to receive only text, the length parameter
is the same as the string length of the data parameter.

The Starling can use software handshaking (XON/OFF) —see
setserial. If software handshaking is enabled, bytes with the
values 17 (0x11, Ctrl-Q) and 19 (0x13, Ctrl-S) and zero can-
not be received with this function. As an alternative, when
you need to transfer binary data in combination with soft-
ware handshaking, you can encode it using a protocol like UU-
encode.

Example: See serial.p on page 10.

See also: setserial, transmit

@reset Script entry point

Syntax: @reset()

Returns: The return value of this function is currently ignored.

@sample � 53

Notes: On power-up or on reset of the device, this is the first func-
tion that is called. This function is therefore appropriate to
initialize the settings needed for the script and other call-back
functions.

Function main is an alternative name for the same function
—you can use either @reset or main in a script, but not both.

After starting a new script with exec, the new script also starts
with the @reset function.

See also: exec

@sample A burst of samples arrived

Syntax: @sample(const Fixed:stamps[], numsamples)

stamps An array containing time-stamps in milliseconds.
As the values are in fixed-point format with three
decimals, the time-stamps have a resolution of a
microsecond.

numsamples The number of time-stamps in parameter stamps

Returns: The return value of this function is currently ignored.

Notes: After a pin has been set up for sampling (see samplepin, the
Starling starts sampling data as soon as the state of that input
pin changes, either from high to low, or from low to high. What
it passes to the @sample() function are only the time-stamps
of these changes, not whether they go up or down. However,
you only need to know the direction of the first state change;
since each time-stamp signals a toggle of the pin level, you can
derive the pin level at any moment in time from the initial
state. For the Starling controller, the initial state is defined as
“high”, so the first state change that is recorded is a transition
from high-level to low-level. This occurs at time-stamp zero,
because this change also starts the sampling and all subsequent
time-stamps are relative to the start.

As it is always present, the zero time-stamp that starts the
sampling is not in the stamps array passed to the function.

54 � @synch

That is, when the first element in the stamps array is 1.000,
the signal at the input pin is low between 0.000 ms and 1.000
ms (relative to the start of the sampling); at 1.000 ms, the
signal toggled high.

If the pin is low-level at rest and the first change of the pin
goes high, the stamps array contains a zero time-stamp as its
first element —i.e. stamps[0] is 0.000 in this case.

See also: samplepin

@synch Synchronized lyrics/cue arrived

Syntax: @synch(const event[])

event The text of the synchronized event, as read from
the ID3 tag.

Returns: The return value of this function is currently ignored.

Notes: The buffer for storing synchronized events is shared with the
buffer for the script. When the script is large, less memory
is available for storing the events. See the section “Reducing
memory requirements” on page 39 for details.

Example: See sylt.p on page 8

See also: play

@timer A timer event occurred

Syntax: @timer()

Returns: The return value of this function is currently ignored.

@timer � 55

Notes: This function executes after the delay/interval set with set-

timer. Depending on the timing precision of the host, the call
may occur later than the delay that was set.

If the timer was set as a “single-shot”, it must be explicitly
set again for a next execution for the @timer function. If the
timer is set to be repetitive, @timer will continue to be called
with the set interval until it is disabled with another call to
settimer.

See also: delay, settimer

56

Native functions

audiostatus Get the current audio status

Syntax: AudioStat: audiostatus(decoder=1)

decoder The decoder for which the status information is
requested. For models with a dual decoder, this
parameter can be 1 or 2. This parameter is ig-
nored on models with a single decoder.

Returns: One of the following values:
Stopped (0)

The audio is stopped.
Paused (1)

The audio is paused and can be resumed.
Playing (2)

The audio is currently playing.

Notes: This function always returns the active status; it does not rely
on the presence of the event function @audiostatus.

See also: @audiostatus

bass Tone adjust (bass)

Syntax: bass(gain, frequency=200, decoder=1)

gain The gain in the range of 0 dB to +12 dB (boost
only).

frequency The frequency at which the bass enhancement
starts. This parameter is clamped between 20
Hz and 150 Hz.

decoder The decoder to which the tone adjustment ap-
plies. For models with a dual decoder, this pa-
rameter can be 1 or 2. This parameter is ignored
on models with a single decoder.

Returns: true on success, false on failure.

clamp � 57

Notes: The bass enhancer uses a DSP algorithm that improves the
bass levels while avoiding clipping. The algorithm is most
effective with dynamical music material, or when the playback
volume is not set to maximum.

See also: setvolume, treble

clearioqueue Remove switch or input events from the queue

Syntax: clearioqueue()

Returns: This function always returns 0.

Notes: During lengthy processing (by the script), any I/O events are
queued. These events will then be handled as soon as the
lengthy processing terminates. If this is undesired, the script
may clear the I/O event queue immediately after finishing the
process. All I/O events that have happened in the mean time
will then have been “forgotten”.

See also: @input

clamp Force a value inside a range

Syntax: clamp(value, min=cellmin, max=cellmax)

value The value to force in a range.

min The low bound of the range.

max The high bound of the range.

Returns: value if it is in the range min – max; min if value is lower than
min; and max if value is higher than max.

See also: max, min

58 � configiopin

configiopin Configure an I/O pin

Syntax: configiopin(pin, PinConfig: type,

bool: debounce=false)

pin The pin number, between 0 and 7 for models
with 8 I/O pins, or between 0 and 15 for models
with 16 I/O pins.

type The type, one of the following:

Output (0)
The pin is configured as output, and it
can be set with setiopin.

Input (1)
The pin is configured as input and it can
be read with getiopin; a change of the
pin also invokes public function @input.

debounce This parameter is only relevant when a pin has
been declared as “input”. When debouncing for
an input pin is true, a change in status of the
pin is reported only after it has stabilized to a
new level. Glitches with a duration less then 20
ms are ignored.

Returns: This function always returns 0.

Notes: After reset, all pins are configured as inputs (high-impedance).

When configured as outputs, the pins can drive a LED or an
opto-coupler directly (no intermediate “driver” IC is required).
The voltage of the output pins can be set with setvoltage.

For high-speed sampling of an input pin, see function sam-

plepin.

Example: See switches2.p on page 3

See also: @input, getiopin, samplepin setiopin, setvoltage

delay � 59

cvttimestamp Convert a time-stamp into a date and time

Syntax: cvttimestamp(seconds1970, &year=0, &month=0,

&day=0, &hour=0, &minute=0, &second=0)

year This will hold the year upon return.

month This will hold the month (1–12) upon return.

day This will hold the day of (1–31) the month upon
return.

hour This will hold the hour (0–23) upon return.

minute This will hold the minute (0–59) upon return.

second This will hold the second (0–59) upon return.

Returns: This function always returns 0.

Notes: Some file and system functions return time-stamps as the num-
ber of seconds since midnight, 1 January 1970, which is the
start of the unix system epoch. This function allows to con-
vert these time stamps into date and time fields.

See also: gettime, getdate, settimestamp

delay Halts execution a number of milliseconds

Syntax: delay(milliseconds)

milliseconds

The delay, in milliseconds.

Returns: This function currently always returns zero.

Notes: On some platforms, the sleep instruction also delays for a
given number of milliseconds. The difference between the
sleep instruction and the delay function is that the delay

function does not yield events and the sleep instruction typ-
ically yields. When yielding events is, any pending events are
handled. As a result, the delay function waits without han-
dling any pending events and the sleep instruction waits and
deals with events.

60 � deletecfg

See also: tickcount

deletecfg Deletes a key or a section from an INI file

Syntax: bool: deletecfg(const filename[]="",

const section[]="", const key[]="")

filename The name and path of the INI file. If this pa-
rameter is not set, the function uses the default
name “config.ini”.

section The section from which to delete the key under.
If this parameter is not set, the function stores
the key/value pair outside any section.

key The key to delete. If this parameter is not set,
the function deletes the entire section.

Returns: true on success, false on failure.

Notes: If both section and key are not set, the function deletes all
keys that are outside any sections.

See also: readcfg, writecfg

exec Chain to another script

Syntax: bool: exec(const filename[])

filename The full name of the new script, including the
extension and path.

Returns: false if there was an error in loading of the script, or if its
validation failed. If the function succeeds, it will not return,
but instead start the new script.

See also: @reset

fblockread � 61

fabs Return the absolute value of a fixed point number

Syntax: Fixed: fabs(Fixed: value)

value The value to return the absolute value of.

Returns: The absolute value of the parameter.

fattrib Set the file attributes

Syntax: bool: fattrib(const name[], timestamp=0,

attrib=0x0f)

name The name of the file.

timestamp Time of the last modification of the file. When
this parameter is set to zero, the time stamp of
the file is not changed.

attrib A bit mask with the new attributes of the file.
When set to 0x0f, the attributes of the file are
not changed.

Returns: true on success and false on failure.

Notes: The time is in number of seconds since midnight at 1 January
1970: the start of the unix system epoch.

The file attributes are a bit mask. The meaning of each bit
depends on the underlying file system (e.g. FAT, NTFS, etx2
and others).

See also: fstat

fblockread Read an array from a file, without interpreting the data

Syntax: fblockread(File: handle, buffer[],

size=sizeof buffer)

handle The handle to an open file.

buffer The buffer to read the data into.

62 � fblockwrite

size The number of cells to read from the file. This
value should not exceed the size of the buffer

parameter.

Returns: The number of cells read from the file. This number may be
zero if the end of file has been reached.

Notes: This function reads an array from the file, without encoding
and ignoring line termination characters, i.e. in binary format.
The number of bytes to read must be passed explicitly with
the size parameter.

See also: fblockwrite, fopen, fread

fblockwrite Write an array to a file, without interpreting the data

Syntax: fblockwrite(File: handle, const buffer[],

size=sizeof buffer)

handle The handle to an open file.

buffer The buffer that contains the data to write to the
file.

size The number of cells to write to the file. This
value should not exceed the size of the buffer

parameter.

Returns: The number of cells written to the file.

Notes: This function writes an array to the file, without encoding, i.e.
in binary format. The buffer need not be zero-terminated, and
a zero cell does not indicate the end of the buffer.

See also: fblockread, fopen, fwrite

fdiv � 63

fclose Close an open file

Syntax: bool: fclose(File: handle)

handle The handle to an open file.

Returns: true on success and false on failure.

See also: fopen

fcopy Copy a file

Syntax: bool: fcopy(const source[], const target[])

source The name of the (existing) file that must be
copied, optionally including a full path.

target The name of the new file, optionally including a
full path.

Returns: true on success and false on failure.

Notes: If the target file already exists, it is overwritten.

See also: frename

fdiv Divide a fixed point number

Syntax: Fixed: fdiv(Fixed: oper1, Fixed: oper2)

oper1 The numerator of the quotient.

oper2 The denominator of the quotient.

Returns: The result: oper1/oper2.

Notes: The user-defined / operator forwards to this function.

See also: fmul

64 � fexist

fexist Count matching files, check file existence

Syntax: fexist(const pattern[])

pattern The name of the file, optionally containing wild-
card characters.

Returns: The number of files that match the pattern

Notes: In the pattern, the characters “?” and “*” are wild-cards: “?”
matches any character —but only exactly one character, and
“*” matches zero or more characters. Only the final part of
the path (the portion behind the last slash or backslash) may
contain wild-cards; the names of the directories must be fully
specified.

If no wild-cards are present, the function returns 1 if the file
exists and 0 if the file cannot be found. As such, you can use
the function to verify whether a file exists.

See also: fmatch

ffract Return the fractional part of a number

Syntax: Fixed: ffract(Fixed: value)

value The number to extract the fractional part of.

Returns: The fractional part of the parameter, in fixed point format. For
example, if the input value is “3.14”, ffract returns “0.14”.

See also: fround

fgetchar Read a single character (byte)

Syntax: fgetchar(File: handle)

handle The handle to an open file.

Returns: The character that was read, or EOF on failure.

See also: fopen, fputchar

flength � 65

filecrc Return the 32-bit CRC value of a file

Syntax: filecrc(const name[])

name The name of the file.

Returns: The 32-bit CRC value of the file, or zero if the file cannot be
opened.

Notes: The CRC value is a useful measure to check whether the con-
tents of a file has changed during transmission or whether it
has been edited (provided that the CRC value of the original
file was saved). The CRC value returned by this function is
the same as the one used in ZIP archives (PKZip, WinZip) and
the “SFV” utilities and file formats.

See also: fstat

fixed Convert integer to fixed point

Syntax: Fixed: fixed(value)

value the input value.

Returns: A fixed point number with the same (integral) value as the
parameter (provided that the integral value is in range).

See also: fround, strfixed

flength Return the length of an open file

Syntax: flength(File: handle)

handle The handle to an open file.

Returns: The length of the file, in bytes.

See also: fopen, fstat

66 � fmatch

fmatch Find a filename matching a pattern

Syntax: bool: fmatch(name[], const pattern[], index=0,

maxlength=sizeof name)

name If the function is successful, this parameter will
hold a nth filename matching the pattern. The
name is always returned as a packed string.

pattern The name of the file, optionally containing wild-
card characters.

index The number of the file in case there are multiple
files matching the pattern. Setting this parame-
ter to 0 returns the first matching file, setting it
to 1 returns the second matching file, etc.

size The maximum size of parameter name in cells.

Returns: true on success and false on failure.

Notes: In the pattern, the characters “?” and “*” are wild-cards: “?”
matches any character —but only exactly one character, and
“*” matches zero or more characters. Only the final part of
the path (the portion behind the last slash or backslash) may
contain wild-cards; the names of the directories must be fully
specified.

The name that is returned in parameter name always contains
the full path to the file, starting from the root.

See also: fexist

fmkdir Create a directory

Syntax: bool: fmkdir(const name[])

name The name of the directory to create, optionally
including a full path.

Returns: true on success and false on failure.

fmuldiv � 67

Notes: To delete the directory again, use fremove. The directory
must be empty before it can be removed.

See also: fremove

fmul Multiply two fixed point numbers

Syntax: Fixed: fmul(Fixed: oper1, Fixed: oper2)

oper1

oper2 The two operands to multiply.

Returns: The result: oper1 × oper2.

Notes: The user-defined * operator forwards to this function.

See also: fdiv

fmuldiv Fixed point multiply followed by a divide

Syntax: Fixed: fmuldiv(Fixed: oper1, Fixed: oper2,

Fixed: divisor)

oper1

oper2 The two operands to multiply (before the di-
vide).

divisor The value to divide oper1 × oper2 by.

Returns: The result: oper1×oper2
divisor

.

Notes: This function multiplies two fixed point numbers, then divides
it by a third number (“divisor”). It avoids rounding the
intermediate result (the multiplication) to a fixed number of
decimals halfway. Therefore, the result of fmuldiv(a, b, c)

may have higher precision than “(a * b) / c”.

See also: fdiv, fmul

68 � fopen

fopen Open a file for reading or writing

Syntax: File: fopen(const name[],

filemode: mode=io readwrite)

name The name of the file, including the path.

mode The intended operations on the file. It must be
one of the following constants:
io read

opens an existing file for reading only (the
file must already exist)

io write

creates a new file (or truncates an existing
file) and opens it for writing only

io readwrite

opens a file for both reading and writing;
if the file does not exist, a new file is cre-
ated

io append

opens a file for writing only, where all
(new) information is appended behind the
existing contents of the file; if the file does
not exist, a new file is created

Returns: A “handle” or “magic cookie” that refers to the file. If the
return value is zero, the function failed to open the file.

See also: fclose

fpower Raise a fixed point number to a power

Syntax: Fixed: fpower(Fixed: value, exponent)

value The value to raise to a power; this is a fixed point
number.

exponent The exponent is a whole number (integer). The
exponent may be zero or negative.

Returns: The result: valueexponent; this is a fixed point value.

fread � 69

Notes: For exponents higher than 2 and fractional values, the fpower
function may have higher precision than repeated multiplica-
tion, because the function tries to calculate with an extra digit.
That is, the result of fpower(3.142, 4) is probably more ac-
curate than 3.142 * 3.142 * 3.142 * 3.142.

See also: fsqroot

fputchar Write a single character to the file

Syntax: bool: fputchar(File: handle, value)

handle The handle to an open file.

value The value to write (as a single character) to the
file.

Returns: true on success and false on failure.

Notes: The function writes a single byte to the file; values above 255
are not supported.

See also: fgetchar, fopen

fread Reads a line from a text file

Syntax: fread(File: handle, string[], size=sizeof string,

bool: pack=false)

handle The handle to an open file.

string The array to store the data in; this is assumed
to be a text string.

size The (maximum) size of the array in cells. For a
packed string, one cell holds multiple characters.

pack If the pack parameter is false, the text is stored
as an unpacked string; otherwise a packed string
is returned.

70 � fremove

Returns: The number of characters read. If the end of file is reached,
the return value is zero.

Notes: Reads a line of text, terminated by cr, lf or cr–lf characters,
from to the file. Any line termination characters are stored in
the string.

See also: fblockread, fopen, fwrite

fremove Delete a file or directory

Syntax: bool: fremove(const name[])

name The name of the file or the directory.

Returns: true on success and false on failure.

Notes: A directory can only be removed if it is empty.

See also: fmkdir, fexist, fopen

frename Rename a file

Syntax: bool: frename(const oldname[], const newname[])

oldname The current name of the file, optionally including
a full path.

newname The new name of the file, optionally including a
full path.

Returns: true on success and false on failure.

Notes: In addition to changing the name of the file, this function can
also move the file to a different directory.

See also: fcopy, fremove

fround � 71

fround Round a fixed point number to an integer value

Syntax: fround(Fixed: value,

fround method: method=fround round)

value The value to round.

method The rounding method may be one of:

fround round

round to the nearest integer; a fractional
part of exactly 0.5 rounds upwards (this
is the default);

fround floor

round downwards;

fround ceil

round upwards;

fround tozero

round downwards for positive values and
upwards for negative values (“truncate”);

fround unbiased

round to the nearest even integer num-
ber when the fractional part is exactly 0.5
(the values “1.5” and “2.5” both round
to “2”). This is also known as “Banker’s
rounding”.

Returns: The rounded value, as an integer (an untagged cell).

Notes: When rounding negative values upwards or downwards, note
that −2 is considered smaller than −1.

See also: ffract

72 � fseek

fseek Set the current position in a file

Syntax: fseek(File: handle, position=0,

seek whence: whence=seek start)

handle The handle to an open file.

position The new position in the file, relative to the pa-
rameter whence.

whence The starting position to which parameter posi-
tion relates. It must be one of the following:
seek start

Set the file position relative to the start
of the file (the position parameter must
be positive);

seek current

Set the file position relative to the current
file position: the position parameter is
added to the current position;

seek end

Set the file position relative to the end
of the file (parameter position must be
zero or negative).

Returns: The new position, relative to the start of the file.

Notes: You can either seek forward or backward through the file.

To get the current file position without changing it, set the
position parameter to zero and whence to seek_current.

See also: fopen

fsqroot Return the square root of a value

Syntax: Fixed: fsqroot(Fixed: value)

value The value to calculate the square root of.

Returns: The result: the square root of the input number.

fstat � 73

Notes: This function raises a “domain” error is the input value is
negative.

See also: fpower

fstat Return the size and the time stamp of a file

Syntax: bool: fstat(const name[], &size=0, ×tamp=0,

&attrib=0, &inode=0)

name The name of the file.

size If the function is successful, this parameter holds
the size of the file on return.

timestamp If the function is successful, this parameter holds
the time of the last modification of the file on
return.

attrib If the function is successful, this parameter holds
the file attributes.

inode If the function is successful, this parameter holds
inode number of the file. An inode number is a
number that uniquely identifies a file, and it usu-
ally indicates the physical position of (the start
of) the file on the disk or memory card.

Returns: true on success and false on failure.

Notes: In contrast to the function flength, this function does not
need the file to be opened for querying its size.

The time is in number of seconds since midnight at 1 January
1970: the start of the unix system epoch.

The file attributes are a bit mask. The meaning of each bit
depends on the underlying file system (e.g. FAT, NTFS, etx2
and others).

The inode number is useful for minimizing the gap between
tracks when playing audio tracks sequentially. By storing the
inode number and the file size of the next track in a “resource

74 � funcidx

id” (while the Starling controller is still playing the current
track), you avoid the time needed to search through the di-
rectory system of the FAT file system. See function play for
details on resource ids.

See also: fattrib, flength

funcidx Return a public function index

Syntax: funcidx(const name[])

Returns: The index of the named public function. If no public function
with the given name exists, funcidx returns −1.

Notes: A host application runs a public function from the script by
amx Exec: see the
“Implementer’s
Guide”

passing the public function’s index to amx_Exec. With this
function, the script can query the index of a public function,
and thereby return the “next function to call” to the applica-
tion.

fwrite Write a string to a file

Syntax: fwrite(File: handle, const string[])

handle The handle to an open file.

string The string to write to the file.

Returns: The number of characters actually written; this may be a dif-
ferent value from the string length in case of a writing failure
(“disk full”, or quota exceeded).

Notes: The function does not append line-ending characters to the
line of text written to the file (line ending characters are cr,
lf or cr–lf characters).

See also: fblockwrite, fopen, fread

getiopin � 75

getarg Get an argument

Syntax: getarg(arg, index=0)

arg The argument sequence number, use 0 for first
argument.

index The index, in case arg refers to an array.

Returns: The value of the argument.

Notes: This function retrieves an argument from a variable argument
list. When the argument is an array, the index parameter
specifies the index into the array. The return value is the
retrieved argument.

See also: numargs, setarg

getdate Return the current (local) date

Syntax: getdate(&year=0, &month=0, &day=0)

year This will hold the year upon return.

month This will hold the month (1–12) upon return.

day This will hold the day of (1–31) the month upon
return.

Returns: The return value is the number of days since the start of the
year. January 1 is day 1 of the year.

See also: gettime, setdate

getiopin Read the indicated I/O pin

Syntax: getiopin(pin)

pin The pin number, or -1 to read the state of all
digital I/O pins as a bit mask.

76 � gettime

Returns: If parameter pin is in the range 0. . .15, the return value is the
logical value of that specified I/O pin: 0 or 1. If parameter
pin is -1, the return value is a value where the bits represent
the state of the respective I/O pins.

Notes: On models with 8 I/O pins, the pin parameter must be in
the range 0. . .7, or -1 to read all 8 pins as a bit mask. On
models with 16 I/O pins, the pin parameter must be in the
range 0. . .15, or -1 to read all 16 pins as a bit mask.

When a pin is defined as output, it reads back as zero. See
function configiopin for configuring pins. After reset, all pins
are configured as inputs (high-impedance).

This function always returns the current logical level of the pin,
regardless of whether the public function @input is defined.

See also: @input, configiopin, setiopin

gettime Return the current (local) time

Syntax: gettime(&hour=0, &minute=0, &second=0)

hour This will hold the hour (0–23) upon return.

minute This will hold the minute (0–59) upon return.

second This will hold the second (0–59) upon return.

Returns: The return value is the number of seconds since midnight, 1
January 1970: the start of the unix system epoch.

See also: getdate, settime

getvolume Read the current volume and balance settings

Syntax: bool: getvolume(&volume=0, &balance=0, decoder=1)

volume This (optional) parameter will hold the volume
setting upon return. This is a value in the range
0. . .100.

ispacked � 77

balance This (optional) parameter will hold the balance
setting upon return. This is a value in the range
−100. . .+100.

decoder The decoder whose volume must be queried. For
models with a dual decoder, this parameter can
be 1 or 2. This parameter is ignored on models
with a single decoder.

Returns: This function returns true if a volume fade is currently in
progress, and false if no fade was started or the fade has
finished.

Notes: If the output channels are muted, the original volume settings
will still be returned.

See also: bass, mute, setvolume, treble

heapspace Return free heap space

Syntax: heapspace()

Returns: The free space on the heap. The stack and the heap occupy
a shared memory area, so this value indicates the number of
bytes that is left for either the stack or the heap.

Notes: In absence of recursion, the pawn parser can also give an esti-
mate of the required stack/heap space.

ispacked Determine whether a string is packed or unpacked

Syntax: bool: ispacked(const string[])

string The string to verify the packed/unpacked status
for.

Returns: true if the parameter refers to a packed string, and false

otherwise.

78 � max

max Return the highest of two numbers

Syntax: max(value1, value2)

value1

value2 The two values for which to find the highest num-
ber.

Returns: The higher value of value1 and value2.

See also: clamp, min

memcpy Copy bytes from one location to another

Syntax: memcpy(dest[], const source[], index=0, numbytes,

maxlength=sizeof dest)

dest An array into which the bytes from source are
copied in.

source The source array.

index The index, in bytes in the source array starting
from which the data should be copied.

numbytes The number of bytes (not cells) to copy.

maxlength The maximum number of cells that fit in the
destination buffer.

Returns: true on success, false on failure.

Notes: This function can align byte strings in cell arrays, or concate-
nate two byte strings in two arrays. The parameter index is a
byte offset and numbytes is the number of bytes to copy.

This function allows copying in-place, for aligning a byte region
inside a cell array.

Endian issues (for multi-byte values in the data stream) are
not handled.

See also: strcopy, strpack, strunpack, uudecode, uuencode

netarp � 79

min Return the lowest of two numbers

Syntax: min(value1, value2)

value1

value2 The two values for which to find the lowest num-
ber.

Returns: The lower value of value1 and value2.

See also: clamp, max

mute Mute or unmute the audio

Syntax: mute(bool: on, decoder=1)

on Set to true to silence the audio, or false to
return to the previously set volume.

decoder The decoder that must be muted or unmuted.
For models with a dual decoder, this parameter
can be 1 or 2. This parameter is ignored on
models with a single decoder.

Returns: This function always returns 0.

Notes: This function does not change the volume and balance setting.
When “unmuting”, the device returns to the previously set
volume.

See also: setvolume

netarp Refresh the ARP cache

Syntax: bool: netarp(const remote addr[])

remote addr The domain name or the IP address of the host
whose hardware address (MAC address) should
be refreshed in the ARP cache.

Returns: true if the remote MAC address is in the ARP cache, and
false otherwise.

80 � netclose

Notes: The ARP cache holds the hardware (MAC) address of the first
hop to send a network packet to, in order to get the packet to
the destination. This may either be the MAC address of the
other host, or the MAC address of the relevant gateway.

When making a connection, or sending a packet to another
host, if the MAC address is not already in the ARP cache, the
network interface first needs to obtain the MAC address. It
does this via a protocol named “ARP”. Waiting for the ARP
response may take several seconds, especially if the remote
host is unresponsive (e.g. it is “down”). In situations where no
delay in setting up a connection may be allowed, one option is
to regularly refresh the MAC address in the ARP cache, and
to communicate with the remote host only if the MAC address
is indeed cached (and therefore the remote host is “up”).

This function sends an ARP request, but returns immediately
—before the response arrives. The first time that this function
is called for a new host, it may therefore return false, even if
the host is up. When netarp is called again, after a suitable
delay, the ARP cache will have been updated.

See also: netlookup

netclose Close a socket

Syntax: bool: netclose(socket)

socket The socket number to close. This value must
have been returned by an earlier call to a func-
tion that opens a socket (see netconnect and
netlisten).

Returns: true on success and false on failure.

Notes: When closing a “listening” connection, the ability for remote
hosts to connect is disabled. To close the active connection
with a remote host, but remain available to new connections,
call netlisten after the call to netclose.

See also: netconnect, netlisten

netctrl � 81

netconnect Open a connection / socket

Syntax: netconnect(const remote addr[])

remote addr The IP address and (optionally) the port num-
ber to connect to. An example of a full address
is “193.54.119.12:23”, where the host is at IP
address 193.54.119.12 and the service is at port
number 23. If the port number is absent, the
function connects to the default port 9930. In-
stead of an IP address, you may also give a do-
main name, as in “server.mydomain.com:2”.

Returns: The function returns a socket number of the open is successful,
or zero on failure.

Notes: This function opens a socket and sets up a transfer to a re-
mote host. That is, it sets up an outgoing connection. See
netlisten to handle incoming connections.

See also: netclose, netsend

netctrl Set connection options

Syntax: netctrl(NetCtrl: option, value)

option The connection option to set, it must be one of
the following:
MSS512 (1)

A value of 1 forces the TCP MSS to be
512 bytes and the TCP reception window
to be twice the MSS (i/e/ 1024 bytes).
A value of 0 sets the default value of the
MTU minus 40 bytes, and a dynamic win-
dow size.

FullDuplex (2)
A value of 1 switches the interface to be
full-duplex. A value of 0 sets the inter-
face to half-duplex. The network interface
starts up as half-duplex.

82 � netdownload

UseChecksum (3)
A value of 1 activates checksum verifica-
tion on all received packets. Packets with
an incorrect checksum are rejected. A
value of 0 deactivates checksum verifica-
tion. This option does not have any effect
on transmitted packets: packets sent out
always have a checksum set.

value The value to set the option to. See parameter
option for details.

Returns: The function returns a socket number of the open is successful,
or zero on failure.

See also: netsetup

netdownload Download a file

Syntax: netdownload(const url[], const filename[]="",

File: handle=File:0)

url The full network path of the file to download,
preferably including the protocol prefix. For ex-
ample, to download the file “loops.mp3” from
www.soundclips.com using the HTTP protocol,
the URL would be:
“http://www.soundclips.com/loops.mp3”.

filename The local filename to store the downloaded file
in. This name may optionally include a direc-
tory.

handle An optional handle to a file that was has been
explicitly opened by the script.

Returns: The function returns 0 on error (unable to connect to the host,
or file not found) and a socket number on success.

netinfo � 83

Notes: To download from a HTTP server, use the protocol designator
“http://”; to download from an FTP server, the protocol des-
ignator is “ftp://”. To download a file from a TFTP server,
the protocol designator is “tftp://”.

The function returns before the download is complete. When
the download completes, you will receive the event @netstatus
with code NetHttpDone, NetFtpDone or NetTftpDone. You
can abort a transfer by calling netclose on the returned socket
number.

When passing in a file handle instead of a filename, the handle
must be opened by the script before calling this function, but
it is closed at the end of the download. Using a file handle
allows you to explicitly reserve the file space on the memory
card.

See also: @netstatus, netclose, netupload

netinfo Get network status information

Syntax: netinfo(NetInfo: code,

string[]="", size=sizeof string)

code The kind of data to return, it must be one of the
following:

LinkStatus (0)
The status of the physical link: 0 if the
device has no good (physical) connection
to a network (LAN or WAN), and 1 if the
physical link is present. A bad physical
link usually indicates that the device is
disconnected or that the cable is defective.

IPaddress (1)
The IP address of this host.

SubnetMask (2)
The subnet mask for the LAN.

GatewayIP (3)
The address of the gateway.

84 � netinfo

DNS IP (4)
The address of the primary domain name
server.

MACaddr (5)
The hardware (MAC) address; this infor-
mation is only returned as a string.

HostName (6)
The name of the Starling device as known
on the network; this item is only returned
as a string.

StreamQueue (7)
The level to which the stream queue is
filled, in the context of progressive HTTP
streaming. This value is in kilobytes, so
when the return value is 98, there is 98
KiB of audio data in the queue, at the
time of the call.

PacketLoss (8)
The number of RTP packets lost since
the last request; in the context of RTP
streaming. This “lost packets” count is
reset to zero after this call.

LeaseTime (9)
The time that is left before the lease ex-
pires (in seconds).

NetErrors (10)
The number of transmission errors that
are detected by the Ethernet hardware.
A high number of errors indicates a mis-
match of full versus half duplex between
the device and the switch or router to
which it is connected. See the function
netctrl for setting full/half duplex.

string If provided (and of suitable length), the item is
stored in a formatted way in this string.

size The size of the string parameter, in cells. Since
the function will store the data in parameter

netlisten � 85

string as a packed string, four characters fit into
a single cell.

Returns: The requested value, or zero on error.

Notes: The function returns the data as a number (except for the
codes MACaddr and HostName). If a string of suitable length
is provided, the function also stores the value as a formatted
number. IP addresses are stored in the string parameter as
dotted numbers (for example: “192.168.1.16”).

See also: @netstatus, netsetup, netstream

netlisten Open a “listening” connection

Syntax: netlisten(port=9930, NetProtocol: protocol=UDP)

port The number of the port to listen to. The default
port is 9930.

protocol Must be either TCP or UDP.

Returns: The socket number, or zero on error.

Notes: A “listening connection” is needed to accept incoming connec-
tions. For outgoing connections, see netconnect. Both incom-
ing and outgoing connections need the @netreceive function
to handle received data. When a remote host connects to a
listening socket, this is also called a “passive connect”.

By default, a listening connection is already set up on the UDP
port 9930. In order to listen to a different port, or to listen on
a TCP connection, you need to call netlisten explicitly.

The function returns a socket number that was opened for the
listener. To stop listening on the port, close this socket number
with netclose. After closing a listening socket, an external
host can no longer connect to the MP3 controller (and send it
data). In order to close a connection and return to a listening
state, first call netclose and then call netlisten again to set
up a new listener.

86 � netlookup

You can only listen to one TCP socket and/or one UDP socket
at a time. A UDP socket may receive incoming packets from
multiple hosts (and reply to multiple hosts); a TCP socket is
a point-to-point connection to a single host.

Example: See the Telnet server (skeleton) on page 23.

See also: @netreceive, netclose, netconnect

netlookup Look up a domain name

Syntax: bool: netlookup(const domainname[], ipaddress[],

size=sizeof ipaddress)

domainname The domain name of the host to get the IP ad-
dress for.

ipaddress The IP address will be stored in this parameter,
as a packed string. For the maximum address
length, the string should be able to contain at
least 16 characters.

size The size (in cells) of parameter ipaddress. If
this value is less than four, the returned IP ad-
dress may be truncated.

Returns: true on success, false on failure.

Notes: The purpose of this function is to convert a domain name to a
dotted IP address. This allows a script to use the IP address to
communicate with the remote host, and “forget” the domain
name. There are two advantages in using IP addresses instead
of domain names: IP addresses are usually shorter (and require
less memory) and connecting to an IP address is quicker than
to a domain name.

See also: netconnect

netping � 87

netping “Ping” remote host

Syntax: bool: netping(const remote addr[], sequence=0)

remote addr The IP address or the domain name of the re-
mote host to send a ping request to. No port
number may be attached to the IP address or
domain name.

sequence An arbitrary number that allows you to match
the ping response to a request, in case you send
multiple “pings”.

Returns: true if the “ping” message could be sent, false if sending the
message failed.

Notes: The first step in diagnosing a network problem often is to send
a “ping” message. If the message can be sent and a reply is
received within (at most) a few seconds, the core protocols of
the TCP/IP protocol suite are working and the remote host is
up.

If a call to netping fails, this indicates one of the following:

⋄ Physical connection down: no cable is connected to the
device, the cable is damaged, the network switch or hub is
down, . . .

⋄ No gateway: the IP address in remote_addr lies in a differ-
ent network than this host and the gateway is misconfigured
or non-responding. This situation may also occur when this
host has obtained a link-local address and it is trying to
reach computers outside the link-local address range.

⋄ ARP failure: the IP address in remote_addr is in the same
network as this host, but the remote host does not respond
to address look-up queries (ARP). This usually means that
the remote host is down.

⋄ DNS/NetBIOS failure: if you passed in a domain name
in parameter remote_addr (instead of an IP address), this
name could not be resolved to an IP address using DNS
and/or NetBIOS queries.

88 � netsend

Even if the “ping” message was transmitted successfully, func-
tion netping returns immediately after sending the ping re-
quest; it does not wait for a reply. If the remote host responds
to the ping request, the returned answer will fire the event
@netstatus with code NetPing and the status parameter set
to the sequence number of the corresponding call to netping.

See also: @netstatus, netinfo

netsend Send a packet

Syntax: bool: netsend(const buffer[], size=sizeof buffer,

const remote addr[])

buffer The data to send to a remote host.

size The size of the buffer in cells.

remote addr Either an IP address and a port, for sending an
UDP datagram, or a socket number for sending
a TCP message —see the notes for details.

Returns: true on success and false on failure.

Notes: When sending an UDP message, the remote address should
have the form like “193.54.119.12:23”, where the host is at IP
address “193.54.119.12” and the service is at port number 23.
You may give a domain name, like “server.mydomain.com:23”,
instead of an IP address. If the port number is absent, the
function connects to the default port 9930.

For sending a TCP message, the remote_addr parameter must
contain only a socket number, optionally prefixed with a “#”.
For example, when sending on socket 3, remote_addr could
have the value “#3”. See netsocket to convert socket numbers
to a string with a “#” prefix.

TCP connections must be set up before any data can be sent,
see function netconnect.

The netsend function sends numeric data in parameter buffer
as 32-bit values in “network byte order” (Big Endian). When

netsetup � 89

sending text data, the text is padded to a multiple of four bytes
(the size of a pawn cell).

Example: See the Telnet server (skeleton) on page 23.

See also: @netreceive, netconnect, netsocket

netsetup Initialize the network

Syntax: bool: netsetup(const ip address[]="",

const gateway address[]="",

const dns address[]="",

const subnet mask[]="",

const hostname[]="")

ip address The IP address of this host (the MP3 controller),
or empty to have it looked up from a DHCP
server.

gateway address

The IP address of the gateway, or empty to have
it looked up from a DHCP server.

dns address The IP address of the DNS server, or empty to
have it looked up from a DHCP server.

subnet mask The network mask in “dotted format” (see be-
low), or empty to have it looked up from a DHCP
server.

hostname The name of this host. This name is used for the
DHCP request and for the DNS and NetBIOS
look-ups. If left empty, the standard name is
“Starling”.

Returns: true on success and false on failure.

90 � netshutdown

Notes: All IP addresses should be in “dotted format”, meaning four
decimal numbers in the range of 0 to 255 separated by periods.
An example is 192.168.10.29.

You should avoid doing partial DHCP look-ups —either leave
the first three parameters of this function empty, in order to
have them provided by a DHCP server, or specify all three:
the host IP address, the gateway address and the DNS server
address. For common networks, the function can establish the
network mask automatically, but if known, it is best to specify
it as well.

If no IP addresses are given, and DHCP fails too, the Starling
assigns a “link-local” address to itself. Link-local addresses are
only valid inside a LAN (the link-local address range is non-
routable). The Starling will not have access to the Internet
when it has a link-local address. The link-local address scheme
is also known as “AutoIP” and “APIPA”.

The network interface starts up in half-duplex with an MTU
of 1454 bytes (a safe value for based on Ethernet 2 frames
tunneled over PPoE), and with an adaptive reception window.
These options can be changed with netctrl.

Example: See the code snippets on page 22 and page 28.

See also: netctrl, netshutdown

netshutdown Close the network interface

Syntax: netshutdown()

Returns: This function currently always returns 0.

Notes: This function closes down the network support and frees all
resources.

See also: netsetup

netsnmptrap � 91

netsnmpcfg Set the communities (passwords) for SNMP

Syntax: netsnmpcfg(const readonly community[],

const readwrite community[])

readonly community

The password that allows reading (but not mod-
ifying) device values. The default string for this
community is “public”.

readwrite community

The password that allows modifying device val-
ues. The default string for this community is
“private”.

Returns: This function currently always returns 0.

Notes: See the section on SNMP on page 32 for more information on
SNMP authentication and access rules.

See also: @netsnmp, netsnmptrap

netsnmptrap Send an SNMP trap

Syntax: bool: netsnmptrap(const remote addr[], trap,

item=0, const value[]="")

remote addr The IP address or the domain name of the host
to send the trap to.

trap The code for the trap. Predefined (standardized)
trap numbers are:
ColdStart (0)

Device power-up.
WarmStart (1)

Device reset.
LinkDown (2)

Network link is down.

LinkUp (3)
Network link is up.

92 � netsocket

AuthenticationFailed (4)
Authentication failed.

EGPNeighborLoss (5)
Neighbour in the Exterior Gateway
Protocol was lost.

See the SNMP standard for details on the stan-
dard traps.

Instead of a predefined trap number, you can
also send a device-specific trap (this is called
an “enterprise-specific” trap in the SNMP docu-
mentation.

item Parameter to which the trap relates (see the MIB
file).

value New value of the item parameter, which caused
the trap.

Returns: true on success, false on failure (trap could not be sent).

Notes: The MIB file must define all “enterprise-specific” traps with
trap numbers 6 and higher. The SNMP implementation of the
Starling does not support enterprise-specific traps with num-
bers 0 to 5, because these are reserved for the standard traps
(see parameter trap).

See also: @netsnmp, netsyslog

netsocket Make a socket string from a socket number

Syntax: netsocket(value)

value The socket number.

Returns: A string containing the character “#” followed by the text rep-
resentation of the parameter value. For example, if parameter
value is 5, this function returns the string "#5".

See also: netsend

netstream � 93

netsocket Make a socket string from a socket number

Syntax: bool: netsockstat(socket, &protocol=0, &sent=0,

&received=0)

socket The socket number.

protocol On return, this value will be set to 1 (ICMP), 6
(TCP) or 17 (UDP), depending on the protocol
of the socket.

sent On return, this value will be set to the current
value of the TCP sequence number for the trans-
mitted data.

received On return, this value will be set to the current
value of the TCP sequence number for the re-
ceived data.

Returns: true on success, false on failure (invalid socket)

Notes: In the TCP/IP protocols, the sequence numbers represent the
number of bytes being transmitted and received, including all
bytes transmitted for data synchronization and acknowledge-
ments. The sequence numbers do, however, not start at zero
(due to protocol reasons). To get the true number of received
and transmitted bytes, query the sequence numbers immedi-
ately after opening a connection, and subtract these “start val-
ues” from the sequence numbers obtained in subsequent calls
to netsockstat.

netstream Start buffering an audio stream

Syntax: netstream(const url[], buffermark=128,

bool: autoplay=true)

94 � netstream

url The full network path of the file to download,
preferably including the protocol prefix. The
protocol prefix is “icy://” for Shoutcast and
Icecast servers that are on the default port 8000.
If the server uses port 80 instead, you may use
the protocol prefix “http://”, or add a port
number explicitly.

buffermark The criterion for the fill level of the stream queue
before starting playing the stream, in kilobytes.
The minimum value is 8. See page 26 for details
on the stream queue.

autoplay If true, the stream starts to play (output audio)
as soon as the level in parameter buffermark is
reached. When set to false, the public func-
tion @netstatus is still called with code Net-

StreamQueue, but no audio is output.

Returns: The socket number opened for the stream, or 0 on failure.

Notes: Many Shoutcast and Icecast servers publish only an URL to
a playlist, which then in turn contains the URL to the audio
stream. This function needs the latter: the URL to the audio
stream. If you wish to use the playlist approach, your script
can download it via netdownload and then parse through it
with the file functions (the playlist is a standard text file).

When the stream queue reaches the indicated level, the event
function @netstatus receives the NetStreamQueue event. By
default, the stream also starts playing automatically (possi-
bly interrupting a track that may be playing at the time).
However, if parameter autoplay is set to false, the script
must explicitly call function play with parameter "stream:"
to start playing the stream.

To close a stream, call netstream with the url parameter set
to an empty string.

Example: See the code snippet on page 28.

See also: @netstatus, play

netsyslog � 95

netsynctime Request network time synchronization

Syntax: bool: netsynctime(const remote addr[])

remote addr The IP address or the domain name of the re-
mote host to send the network time request to.
No port number may be attached to the IP ad-
dress or domain name.

Returns: true if the request for the network time could be sent, false
if sending the request failed.

Notes: The function returns immediately after sending the request; it
does not wait for a reply. If the remote host responds to the
network time request, the returned answer will fire the event
@netstatus with code NetTimeSync. The internal clock of the
MP3 controller will also be set to the time that the remote host
returns.

This function uses the protocol SNTP to synchronize the clock.
This protocol returns the time in UTC (the current name for
“Greenwich Mean Time”). To obtain the accurate local time,
you need to intercept the NetTimeSync event (function @net-

status) and add the time zone offset to the time. With this
procedure, you can also adjust for daylight saving time.

See also: @netstatus

netsyslog Send a system log message

Syntax: bool: netsyslog(const remote addr[],

const message[], severity=5)

remote addr The IP address or the domain name of the re-
mote host to send the log message to. No port
number may be attached to the IP address or
domain name.

message The message to send to the Syslog server.

severity By convention, a value between 0 and 7, with the
following meanings:

96 � netupload

0 = emergency (system is unusable)

1 = alert (immediate action required)

2 = critical

3 = error

4 = warning

5 = notice (normal, but significant condition)

6 = informational

7 = debug

Returns: true on success, false if sending the message failed.

Notes: Syslog is an industry standard protocol used for capturing log
information for devices on a network, usually via UDP Port
514. Syslog support is included in unix and Linux based sys-
tems, but is not included in Microsoft Windows and MacOS.
However, there are third-party applications available to add
this capability to your system.

The function uses “local0” as the facility code in the Syslog
message.

See also: netsnmptrap

netupload Download a file

Syntax: netupload(const url[], const filename[]="")

url The full network path where the file will be up-
loaded, preferably including the protocol prefix.
To upload a file, with the name “loops.mp3”, on
the remote host at address 195.200.2.66, and us-
ing TFTP, the URL would be:
“tftp://195.200.2.66/loops.mp3”.

filename The full path and filename of the local file. If
not provided, the file is downloaded to the root
directory.

Returns: The function returns 0 on error (unable to connect to the host,
or file not found) and a socket number on success.

pause � 97

Notes: In the current version of the firmware, only FTP and TFTP
are available as protocols for uploading data to an external
server. To upload to an FTP server, use the protocol desig-
nator “ftp://”; for a TFTP server, the protocol designator is
“tftp://”.

The function returns before the upload is complete. When
the upload completes, you will receive the event @netstatus
with code NetHttpDone, NetFtpDone or NetTftpDone. You
can abort a transfer by calling netclose on the returned socket
number.

See also: @netstatus, netclose, netdownload

numargs Return the number of arguments

Syntax: numargs()

Returns: The number of arguments passed to a function; numargs is
useful inside functions with a variable argument list.

See also: getarg, setarg

pause Pauses playback

Syntax: bool: pause(decoder=1)

decoder The decoder that must be paused. For models
with a dual decoder, this parameter can be 1 or
2. This parameter is ignored on models with a
single decoder.

Returns: true on success, false on failure (no audio is currently play-
ing).

See also: play, resume, stop

98 � play

play Start playing an audio file

Syntax: bool: play(const filename[], repeats=0, bool:

paused = false, decoder=1)

filename The full filename and path of the file, or a re-
source id for the file. See the notes for the for-
mat of a resource id.
The filename may also be an URL to a track on
a HTTP server or an URL to a streaming server.

repeats The number of times that the audio segment
should be repeated. When set to zero (the de-
fault value), the audio file plays only once. When
set to cellmax, the audio file is repeated indef-
initely until it is explicitly stopped or until an-
other file is scheduled to play.

paused When set to true, the track is prepared for play-
back in the specified decoder, but the decoder is
put in “paused” mode. To play the track, you
must call resume.

decoder The decoder to play the track on. For models
with a dual decoder, this parameter can be 1 or
2. This parameter is ignored on models with a
single decoder.

Returns: true on success, false on failure (file not found or invalid
format).

Notes: Instead of a path and filename of an audio track, you can also
pass in a “resource id” of the track. The resource id is an array
with three values:

⋄ Array index 0 (the first cell of the array) must have the value
1.

⋄ Array index 1 must have the “inode” number of the file, see
fstat.

⋄ Array index 2 must have the size of the file in bytes (also
obtained with fstat).

readcfg � 99

The purpose of resource id’s is that looking up a track in the
directory structure may be a time-consuming operation if you
have many audio tracks on the card. With fstat, the script
can prepare the parameters of the next track to play and store
it in a resource id —all while the device is playing another
track. When that track ends, the script plays the resource id.
Since no more “looking up” is necessary, the prepared track
plays immediately. Thus, playing a resource id allows you to
minimize the gap between tracks.

Function play may also be used to start playing a network
stream. However, the function netstream offers more control
for streaming audio.

Example: See serial.p on page 10.

See also: fstat, netstream, resume, stop

random Return a pseudo-random number

Syntax: random(max)

max The limit for the random number.

Returns: A pseudo-random number in the range 0. . .max-1.

Notes: The random-number generator is based on a cryptographic
function and it is considered to produce good quality pseudo-
random numbers. The generator chooses its own seed at each
power-up.

readcfg Reads a text field from an INI file

Syntax: readcfg(const filename[]="", const section[]="",

const key[], value[], size=sizeof value,

const defvalue[]="", bool: pack=true)

filename The name and path of the INI file. If this pa-
rameter is not set, the function uses the default
name “config.ini”.

100 � readcfgvalue

section The section to look for the key. If this parameter
is not set, the function reads the key outside any
section.

key The key whose value must be looked up.

value The buffer into which the field that is read is
stored into. If the key cannot be found in the
appropriate section of the INI file, this field will
contain the defvalue parameter upon return.

size The (maximum) size of the value array in cells.
For a packed string, one cell holds multiple char-
acters.

defvalue The string to copy into parameter value in case
that the function cannot read the field from the
INI file.

pack If the pack parameter is false, the text is stored
as an unpacked string; otherwise a packed string
is returned.

Returns: The number of characters stored in parameter value.

See also: readcfgvalue, writecfg

readcfgvalue Reads a numeric field from an INI file

Syntax: readcfgvalue(const filename[]="",

const section[]="", const key[],

defvalue=0)

filename The name and path of the INI file. If this pa-
rameter is not set, the function uses the default
name “config.ini”.

section The section to look for the key. If this parameter
is not set, the function reads the key outside any
section.

key The key whose value must be looked up.

reset � 101

defvalue The value to return in case that the function
cannot read the field from the INI file.

Returns: The numeric value if the field, or the value of defvalue if the
field was not found in the section and/or at the key.

See also: readcfg, writecfgvalue

readconfig Read device configuration

Syntax: readconfig(data[], size=sizeof data, area=0)

data An array that will contain the data read from the
configuration area upon return of this function.

size The number of cells to read in the array. The
maximum size if 64 cells.

area The area to store the data; 0 = Flash ROM, 1
= battery backed RAM.

Returns: This function currently always returns 0.

Notes: The Starling controller has two areas of auxiliary non-volatile
memory area into which the script can store data. Typi-
cally, device configurations that should be saved even when
the SD/MMC card is exchanged, are stored in the configura-
tion area.

See function storeconfig for the difference between the two
configuration memory areas.

See also: storeconfig

reset Causes a full reset

Syntax: reset()

Returns: This function does not return.

102 � resume

Notes: When this function is called, the Starling goes into a reset.
This also causes function @reset (in the script) to be invoked
again.

The Starling will poll for a debugger on the RS232 after a
programmed reset, regardless of whether the script on the
SD/MMC card was built with debug information. If no de-
bugger is present, the polling causes a start-up delay of one
second.

Example: See the debugger support function on page 42.

See also: @reset

resume Resumes playback that was paused earlier

Syntax: bool: resume(decoder=1)

decoder The decoder that must be resumed. For models
with a dual decoder, this parameter can be 1 or
2. This parameter is ignored on models with a
single decoder.

Returns: true on success, false on failure (i.e. no audio is currently
paused).

Notes: The difference between resume and play is that resume will
resume playback from the position where the audio was paused
earlier; play will always start playing from the beginning of
the track.

See also: pause, play

samplepin Configure a pin for input sampling

Syntax: samplepin(pin, timeout)

pin The pin number, between 0 and 7 for models
with 8 I/O pins, or between 0 and 15 for models
with 16 I/O pins.

seekto � 103

timeout The duration of the sampling period, in millisec-
onds, starting from the first detected change in
the level of the pin (low to high, or high to low).

Returns: This function always returns 0.

Notes: The pin is configured as input (without debouncing) and for
collecting time-stamped data. When a change of the value of
the pin is detected, all subsequent changes of the pin within the
configured time-out are passed to the public function @sample,
with precision time-stamps.

Only a single pin may be configured for sampling.

See also: @sample, configiopin

seekto Set the position in the audio track

Syntax: bool: seekto(milliseconds, decoder=1)

milliseconds

The position to move to, in milliseconds from the
start of the track.

decoder The decoder that must jump to a new position
(in the track that it is playing). For models with
a dual decoder, this parameter can be 1 or 2.
This parameter is ignored on models with a sin-
gle decoder.

Returns: true on success, false on failure.

Notes: You must have started to play the track before you can seek to
a position. The track may be in “paused” state, but it must
be active in the decoder.

See function trackinfo to get the duration of the track. To
get the current position into a playing track, you should obtain
a time stamp (function tickcount) and subtract from this the
time stamp at which the track started to play.

ForMP3 files, seeking to a position is accurate for “constant bit
rate” tracks (CBR); it is fairly accurate for “variable bit rate”

104 � setalarm

tracks (VBR) that have a “Xing” header. When a variable bit
rate MP3 file lacks a Xing header, the seekto function works,
but the seek position may be inaccurate.

For Vorbis files, the seek position may be inaccurate.

See also: trackinfo, play

setalarm Set the timer alarm

Syntax: setalarm(year=-1, month=-1, day=-1, weekday=-1,

hour=-1, minute=-1, second=-1)

year The year to match for the alarm, or -1 for not
matching the year for the alarm. This value must
be in the range 1970–2099.

month The month to match for the alarm, or -1 for not
matching the month for the alarm. This value
must be in the range 1–12.

day The day to match for the alarm, or -1 for not
matching the day for the alarm. This value must
be in the range 1–31 (or the last valid day of the
month).

weekday The “day of the week” to match for the alarm,
or -1 for not matching the day of the week for
the alarm. This value must be in the range 1–7,
where Monday is day 1.

hour The hour to match for the alarm, or -1 for not
matching the hour for the alarm. This value
must be in the range 0–23.

minute The minute to match for the alarm, or -1 for not
matching the minute for the alarm. This value
must be in the range 0–59.

second The second to match for the alarm, or -1 for not
matching the second for the alarm. This value
must be in the range 0–59.

setarg � 105

Returns: This function currently always returns 0.

Notes: This function sets the alarm to go off at a specific time. All
parameters of this function are optional, and you can switch
the alarm off by leaving all parameters at their default value
when calling the function.

The alarm may be fully specified, with a day, month and year
as well as a complete time with hour, minute and second. Such
a timer will only go off once. Another usage is to set an alarm
at a recurring event, such as every day at 7:15 o’clock. For this
purpose, one would set only the hour and minute parameters
(to 7 and 15 respectively) and leave the rest at −1.

The alarm function needs the current time and date to be set
in the Starling accordingly. On a first start-up after inserting
the battery (or in absence of a battery), the device starts at
midnight 1 January 1970.

See also: @alarm, setdate, settime

setarg Set an argument

Syntax: setarg(arg, index=0, value)

arg The argument sequence number, use 0 for first
argument.

index The index, in case arg refers to an array.

value The value to set the argument to.

Returns: true on success and false if the argument or the index are
invalid.

Notes: This function sets the value of an argument from a variable
argument list. When the argument is an array, the index

parameter specifies the index into the array.

See also: getarg, numargs

106 � setdate

setdate Set the system date

Syntax: setdate(year=cellmin, month=cellmin, day=cellmin)

year The year to set; if this parameter is kept at its
default value (“cellmin”) it is ignored.

month The month to set; if this parameter is kept at its
default value (“cellmin”) it is ignored.

day The month to set; if this parameter is kept at its
default value (“cellmin”) it is ignored.

Returns: This function always returns 0.

The date fields are kept in a valid range. For example, when
setting the month to 13, it wraps back to 1.

See also: getdate, settime, settimestamp

setiopin Set the indicated I/O pin

Syntax: setiopin(pin, status)

pin The pin number, or -1 to set the status of all
digital I/O pins using a bit mask in status.

status The new status for the pin. This is a logical value
(0 or 1) for the digital pins (0. . .7, or 0. . .15) and
a value between 0 and 1023 for the analogue pin
16. If pin is -1, this parameter is interpreted as
a bit mask where the bits represent the desired
output state of the pins.

Returns: The previous state of the pin; this may either be a logical value
(0 or 1) or a bit mask, depending on parameter pin.

Notes: Only pins that are configured as outputs can be set; see the
function configiopin for configuring pins. After reset, all pins
are configured as inputs.

Pin 16 is an analogue pin. It is hard-wired as an output pin
and it cannot be read.

See also: configiopin, getiopin

setserial � 107

setled Configure a pin for input sampling

Syntax: setled(LED: led, bool: on)

led The LED, one of either:
LED Red (0)

The red LED (normally indicating card
access).

LED Green (1)
The green LED (normally indicating
power).

on true to turn the LED on, false to turn it off.

Returns: This function always returns 0.

Notes: The LEDs on the Starling have a default function, but it can
be overruled.

Example: See sylt.p on page 8.

See also: setiopin

setserial Configure the serial port

Syntax: setserial(baud=57600, databits=8, stopbits=1,

parity=0, handshake=0, port=1)

baud The Baud rate, up to 115200. The standard
Baud rates are 1200, 2400, 4800, 9600, 14400,
19200, 28800, 38400, 57600 and 115200. The se-
rial port also supports non-standard Baud rates.
When this parameter is zero, the serial port is
closed.

databits The number of data bits, a value between 5 and
8.

stopbits The number of stop bits, 1 or 2.

parity The parity options, one of the following:
0 disable

108 � setserial

1 odd

2 even

3 mark (force 1)

4 space (force 0)

handshake The handshaking options; 0 for no handshaking
and 1 for software handshaking.

port For devices supporting multiple serial ports, this
parameter specifies which port to set up.

Returns: true on success, false on failure.

Notes: Software handshaking uses the characters XOFF (ascii 19,
Ctrl-S) to request that the other side stops sending data and
XON (ascii 17, Ctrl-Q) to request that it resumes sending
data. These characters can therefore not be part of the normal
data stream (as they would be misinterpreted as control codes).

In a data transfer both sides must agree on the protocol. As
the settings are sometimes fixed on the apparatus that you
wish to attach to the Starling player, the RS232 interface of
the Starling is designed to fit a wide range of protocols.

The Baud rate is a trade-off between transfer speed and reli-
ability of the connection: in noisy environments or with long
cables, you may need to reduce the Baud rate.

The number of data bits is usually 8, occasionally 7 and rarely
6 or 5. With 8 databits, the number of stop bits is typically 1.

Mark and space parity codes are rarely used.

Example: See serial.p on page 10.

See also: @receive, receive, transmit

settimer � 109

settime Set the system time

Syntax: settime(hour=cellmin, minute=cellmin,

second=cellmin)

hour The hour to set, in the range 0–23; if this pa-
rameter is kept at its default value (“cellmin”)
it is ignored.

minute The minute to set, in the range 0–59; if this pa-
rameter is kept at its default value (“cellmin”)
it is ignored.

second The second to set, in the range 0–59; if this pa-
rameter is kept at its default value (“cellmin”)
it is ignored.

Returns: This function always returns 0.

The time fields are kept in a valid range. For example, when
setting the hour to 24, it wraps back to 23.

See also: gettime, setdate, settimestamp

settimer Configure the event timer

Syntax: settimer(milliseconds, bool: singleshot=false)

milliseconds

The number of milliseconds to wait before call-
ing the @timer callback function. Of the timer
is repetitive, this is the interval. When this pa-
rameter is 0 (zero), the timer is shut off.

singleshot If false, the timer is a repetitive timer; if true
the timer is shut off after invoking the @timer

event once.

Returns: This function always returns 0.

Notes: See the chapter “Usage” for an example of this function, and
the @timer event function.

See also: @timer, tickcount

110 � settimestamp

settimestamp Sets the date and time with a single value

Syntax: settimestamp(seconds1970)

seconds1970

The number of seconds that have elapsed since
midnight, 1 January 1970. This particular date,
1 January 1970, is the “unix system epoch”.

Returns: This function always returns 0.

Notes: The function getdate returns the number of seconds since 1
January 1970.

See also: getdate, setdate, settime

setvoltage Set and enable the I/O voltage level

Syntax: setvoltage(voltage, interfaces)

voltage The desired voltage on the I/O pins and the SPI
pins. The parameter is in multiples of 0.1V, so
50 stands for 5.0V and 33 for 3.3V.

interfaces This parameter selects on which interfaces the
power pins are enabled. It is one of the following:
0 disable the power pins on all interfaces
1 enable the power pin on the SPI bus only
2 enable the power pin on the I/O bus only
3 enable the power pins on the SPI and the I/O

buses

Returns: This function always returns 0.

Notes: The SPI interface and the general I/O interface have power
pins that can power external peripherals. The voltage setting
applies to all pins (I/O and power), however, the power pins
can be individually enabled and disabled.

On start-up, the voltage is set to 3.3V and the power pins on
the interfaces are disabled.

See also: setiopin, spi

setvolume � 111

setvolume Set the audio volume and balance

Syntax: bool: setvolume(volume=cellmin, balance=cellmin,

fadetime=0, decoder=1)

volume This (optional) parameter holds the new volume
level, a value in the range 0. . .100. When set to
cellmin, the volume is not changed.

balance This (optional) parameter holds the new balance
setting, a value in the range −100. . .100. When
set to cellmin, the balance is not changed.

fadetime The duration in milliseconds to take for the vol-
ume or balance change.

decoder The decoder to which the volume change applies.
For models with a dual decoder, this parameter
can be 1 or 2. This parameter is ignored on
models with a single decoder.

Returns: true on success, false on failure.

Notes: If the output channels are muted, the new settings take effect
as soon as the audio is unmuted.

Fading the change in volume (or balance) happens in the back-
ground. The script continues running while the fading takes
place. When fading is complete, the script receives an @au-

diostatus event with the code FadeCompleted. Function
getvolume can also be used to check whether a fade is in
progress.

Example: See serial.p on page 10.

See also: @audiostatus, bass, getvolume, mute, treble

112 � spi

spi Send SPI data

Syntax: spi(const data{}, size, frequency=1, select=1,

mode=1)

data An array with the bytes to send. This must be
a packed array.

size The number of bytes in parameter data to send.

frequency The SPI clock frequency in MHz. The default
value of 1 means a 1 MHz clock. When this
parameter is zero, the SPI clock is not changed
from its start-up setting, which is 6 MHz.

select The SPI “chip select” line (also called “slave se-
lect”). Two chip select pins are available on the
SPI connector. When this parameter is set to
zero, no chip select is issued at all.

mode The SPI mode to use; valid values are in the
range 0. . .3. See the notes for details.

Returns: The last value returned by the remote device.

Notes: The Starling has an SPI bus with two general-purpose chip
select lines. To use the SPI bus, you must therefore connect
the device to communicate with to the relevant pins on the
connector. The data sheet documents the pins to use. Since
there are two chip select lines, the function can communicate
with two SPI devices.

The data that a device returns is stored in the data array.
Some devices require additional time to process a command.
In such a case, append one or more additional zero bytes to
the data array.

SPI is flexible in its specification of the clock polarity and the
sampling flank (the “phase”). The SPI “mode” selects one of
the four possible configurations. Another method that is often
used is to specify the polarity and phase separately (these are
denoted as “cpol” and “cphase”). The relation between these
values is:

storeconfig � 113

⋄ mode 0: cpol = 0, cphase = 0
⋄ mode 1: cpol = 0, cphase = 1
⋄ mode 2: cpol = 1, cphase = 0
⋄ mode 3: cpol = 1, cphase = 1

The chip select pin is toggled after every byte for SPI modes 1
and 3, it stays low for the entire transfer for SPI modes 0 and
2. (This is conforming to the SPI specification.)

See also: setvoltage

stop Stop playback

Syntax: bool: stop(decoder=1)

decoder The decoder that must stop playing. For models
with a dual decoder, this parameter can be 1 or
2. This parameter is ignored on models with a
single decoder.

Returns: true on success, false on failure (no audio is currently play-
ing).

Notes: The difference between this function and function pause is that
a paused track may be resumed. The stop function releases
the resources for the track and resets the audio hardware.

Example: See serial.p on page 10.

See also: pause, play

storeconfig Read device configuration

Syntax: storeconfig(const data[], size=sizeof data, area=0)

data An array that contains the data to be stored in
the configuration area.

size The number of cells to store in the configuration
area. The maximum size if 64 cells.

114 � strcat

area The area to store the data; 0 = Flash ROM, 1
= battery backed RAM.

Returns: This function currently always returns 0.

Notes: The Starling controller has two areas of auxiliary non-volatile
memory area into which the script can store data. Typi-
cally, device configurations that should be saved even when
the SD/MMC card is exchanged, are stored in the configura-
tion area.

The size of the configuration area is small: only 64 cells. Large
amounts of data should be stored on the memory card via the
file functions.

Area 0 is the Flash ROM. Data stored in this area is kept if
the both power and the battery are removed. The drawbacks
are that writing to Flash ROM is slow and that Flash memory
can be re-written 100,000 times on the average. Since the con-
figuration area is internal to the Starling, you need to replace
the board once the Flash ROM area becomes defective due to
exceeding the number of re-writes. This area is intended to be
updated only infrequently. (Reading from Flash ROM is quick
and does not wear out the memory.)

Area 1 is SRAM that is backed up with a battery. Writing to
this area is quick and frequent writes do not wear out the mem-
ory (unlike Flash ROM). However, the memory contents are
lost when the battery is removed or when the battery has dis-
charged below the minimum level required for memory backup.

See also: readconfig

strcat Concatenate two strings

Syntax: strcat(dest[], const source[],

maxlength=sizeof dest)

dest The buffer in which the result will be stored.
This buffer already contains the first part of the
string.

strcmp � 115

source The string to append to the string in dest.

maxlength If the length of dest would exceed maxlength

cells after the string concatenation, the result is
truncated to maxlength cells.

Returns: The string length of dest after concatenation.

Notes: During concatenation, the source string may be converted
from packed to unpacked, or vice versa, in order to match dest.
If dest is an empty string, the function makes a plain copy of
source, meaning that the result (in dest) will be a packed
string if source is packed too, and unpacked otherwise.

See also: strcopy, strins, strpack, strunpack

strcmp Compare two strings

Syntax: strcmp(const string1[], const string2[],

bool: ignorecase=false, length=cellmax)

string1 The first string in the comparison.

string2 The first string in the comparison.

ignorecase If logically “true”, case is ignored during the
comparison.

length The maximum number of characters to consider
for comparison.

Returns: The return value is:
−1 if string1 comes before string2,
1 if string1 comes after string2, or
0 if the strings are equal (for the matched length).

Notes: Packed and unpacked strings may be mixed in the comparison.

This function does not take the sort order of non-ascii char-
acter sets into account. That is, no Unicode “Collation Algo-
rithm” is used.

See also: strequal, strfind

116 � strcopy

strcopy Create a copy of a string

Syntax: strcopy(dest[], const source[],

maxlength=sizeof dest)

dest The buffer to store the copy of the string string
in.

source The string to copy, this may be a packed or an
unpacked string.

maxlength If the length of dest would exceed maxlength

cells, the result is truncated to maxlength cells.
Note that several packed characters fit in each
cell.

Returns: The number of characters copied.

Notes: This function copies a string from source to dest. If the
source string is a packed string, the destination will be packed
too; likewise, if the source string is unpacked, the destination
will be unpacked too. See functions strpack and strunpack

to convert between packed and unpacked strings.

See also: strcat, strpack, strunpack

strdel Delete characters from the string

Syntax: bool: strdel(string[], start, end)

string The string from which to remove a range char-
acters.

start The parameter start must point at the first
character to remove (starting at zero).

end The parameter end must point behind the last
character to remove.

Returns: true on success and false on failure.

Notes: For example, to remove the letters “ber” from the string “Jab-
berwocky”, set start to 3 and end to 6.

See also: strins

strfind � 117

strequal Compare two strings

Syntax: bool: strequal(const string1[], const string2[],

bool: ignorecase=false,

length=cellmax)

string1 The first string in the comparison.

string2 The first string in the comparison.

ignorecase If logically “true”, case is ignored during the
comparison.

length The maximum number of characters to consider
for

Returns: true if the strings are equal, false if they are different.

See also: strcmp

strfind Search for a sub-string in a string

Syntax: strfind(const string[], const sub[],

bool: ignorecase=false, index=0)

string The string in which you wish to search for sub-
strings.

sub The sub-string to search for.

ignorecase If logically “true”, case is ignored during the
comparison.

index The character position in string to start search-
ing. Set to 0 to start from the beginning of the
string.

Returns: The function returns the character index of the first occurrence
of the string sub in string, or −1 if no occurrence was found.
If an occurrence was found, you can search for the next occur-
rence by calling strfind again and set the parameter offset
to the returned value plus one.

118 � strfixed

Notes: This function searches for the presence of a sub-string in a
string, optionally ignoring the character case and optionally
starting at an offset in the string.

See also: strcmp

strfixed Convert from text (string) to fixed point

Syntax: Fixed: strfixed(const string[])

string The string containing a fixed point number in
characters. This may be either a packed or un-
packed string. The string may specify a frac-
tional part, e.g., “123.45”.

Returns: The value in the string, or zero if the string did not start with
a valid number.

strformat Convert values to text

Syntax: strformat(dest[], size=sizeof dest,

bool: pack=false, const format[], . . .)

dest The string that will contain the formatted result.

size The maximum number of cells that the dest pa-
rameter can hold. This value includes the zero
terminator.

pack If true, the string in dest will become a packed
string. Otherwise, the string in dest will be un-
packed.

format The string to store in dest, which may contain
placeholders (see the notes below).

... The parameters for the placeholders. These val-
ues may be untagged, weakly tagged, or tagged
as rational values.

Returns: This function always returns 0.

strins � 119

Notes: The format parameter is a string that may contain embedded
placeholder codes:
%c store a character at this position
%d store a number at this position in decimal radix
%q store a fixed point number at this position
%r same as %q (for compatibility with other implementations

of pawn)
%s store a character string at this position
%x store a number at this position in hexadecimal radix

The values for the placeholders follow as parameters in the
call.

You may optionally put a number between the “%” and the
letter of the placeholder code. This number indicates the field
width; if the size of the parameter to print at the position
of the placeholder is smaller than the field width, the field is
expanded with spaces.

The strformat function works similarly to the sprintf func-
tion of the C language.

See also: valstr

strins Insert a sub-string in a string

Syntax: bool: strins(string[], const substr[], index,

maxlength=sizeof string)

string The source and destination string.

substr The string to insert in parameter string.

index The character position of string where substr

is inserted. When 0, substr is prepended to
string.

maxlength If the length of dest would exceed maxlength

cells after insertion, the result is truncated to
maxlength cells.

Returns: true on success and false on failure.

120 � strlen

Notes: During insertion, the substr parameter may be converted from
a packed string to an unpacked string, or vice versa, in order
to match string.

If the total length of string would exceed maxlength cells
after inserting substr, the function raises an error.

See also: strcat, strdel

strlen Return the length of a string

Syntax: strlen(const string[])

string The string to get the length from.

Returns: The length of the string in characters (not the number of cells).
The string length excludes the terminating “\0” character.

Notes: Like all functions in this library, the function handles both
packed and unpacked strings.

To get the number of cells held by a packed string of a given
length, you can use the predefined constants charbits and
cellbits.

See also: ispacked

strmid Extract a range of characters from a string

Syntax: strmid(dest[], const source[],

start=0, end=cellmax,

maxlength=sizeof dest)

dest The string to store the extracted characters in.

source The string from which to extract characters.

start The parameter start must point at the first
character to extract (starting at zero).

end The parameter end must point behind the last
character to extract.

strpack � 121

maxlength If the length of dest would exceed maxlength

cells, the result is truncated to maxlength cells.

Returns: The number of characters stored in dest.

Notes: The parameter start must point at the first character to ex-
tract (starting at zero) and the parameter end must point be-
hind the last character to extract. For example, when the
source string contains “Jabberwocky”, start is 1 and end is
5, parameter dest will contain “abbe” upon return.

See also: strdel

strpack Create a “packed” copy of a string

Syntax: strpack(dest[], const source[],

maxlength=sizeof dest)

dest The buffer to store the packed string in.

source The string to copy, this may be a packed or an
unpacked string.

maxlength If the length of dest would exceed maxlength

cells, the result is truncated to maxlength cells.
Note that several packed characters fit in each
cell.

Returns: The number of characters copied.

Notes: This function copies a string from source to dest where the
destination string will be in packed format. The source string
may either be a packed or an unpacked string.

See also: strcat, strunpack

122 � strunpack

strunpack Create an “unpacked” copy of a string

Syntax: strunpack(dest[], const source[],

maxlength=sizeof dest)

dest The buffer to store the unpacked string in.

source The string to copy, this may be a packed or an
unpacked string.

maxlength If the length of dest would exceed maxlength

cells, the result is truncated to maxlength cells.

Returns: The number of characters copied.

Notes: This function copies a string from source to dest where the
destination string will be in unpacked format. The source
string may either be a packed or an unpacked string.

See also: strcat, strpack

strval Convert from text (string) to numbers

Syntax: strval(const string[], index=0)

string The string containing a number in characters.
This may be either a packed or unpacked string.

index The position in the string where to start looking
for a number. This parameter allows to skip an
initial part of a string, and extract numbers from
the middle of a string.

Returns: The value in the string, or zero if the string did not start with
a valid number (starting at index).

See also: valstr

sysconfig � 123

swapchars Swap bytes in a cell

Syntax: swapchars(c)

c The value for which to swap the bytes.

Returns: A value where the bytes in parameter “c” are swapped (the
lowest byte becomes the highest byte).

sysconfig Set or return system configuration

Syntax: sysconfig(SysConfig: code, value=0)

code The item from the frame header to read, it is one
of the following:

SysXtalAdjust1 (0)
The value parameter adjusts the crystal
frequency of the first decoder.

SysXtalAdjust2 (1)
The value parameter adjusts the crystal
frequency of the second decoder.

SysResetID (2)
Returns the reason for the start-up or re-
set. If the value parameter is non-zero,
the recorded reason is erased.

SysCardID (3)
Returns the manufacturer ID of the mem-
ory card.

SysCardSize (4)
Returns the size of the memory card, in
MiB.

value For read/write parameters, this parameter holds
the new value of the system parameter, if appli-
cable.

Returns: The return value depends on the code parameter.

124 � temperature

Notes: The crystals of the decoders can be adjusted in increments of 2
parts-per-million (PPM). That is, setting the SysXtalAdjust1
field to 1 will adjust the crystal of decoder 1 to tick 2 PPM
quicker.

The “reset ID” returns how the Starling started up. The return
value can be one of the following:

0 Reason of start-up is unknown.

1 External power was applied to the device.

2 The “reset” switch was pressed.

4 The device was reset from software, either through detec-
tion of a fault or because the script called the reset func-
tion.

8 A value of 8 or higher means that a power glitch was de-
tected.

temperature Return the detected temperature

Syntax: temperature()

Returns: The temperature in a multiple of 1/10th of a degree Celsius. For
example, a value of 213 means a temperature of 21.3◦ Celsius.

Notes: To convert the temperature to Fahrenheit, use the equation

Fahrenheit = Celsius ×
9

5
+ 32

The temperature sensor is mounted on the Starling PCB and
measures mainly the temperature of the PCB itself. Some
chips on the Starling PCB are warmer than the PCB temper-
ature at the spot of the sensor.

tickcount Return the current tick count

Syntax: tickcount(&granularity=0)

toupper � 125

granularityUpon return, this value contains the number of
ticks that the internal system time will tick per
second. This value therefore indicates the accu-
racy of the return value of this function.

Returns: The number of milliseconds since start-up of the system. For
a 32-bit cell, this count overflows after approximately 24 days
of continuous operation.

Notes: If the granularity of the system timer is “100”, the return value
will still be in milliseconds, but the value will change only every
10 milliseconds (100 “ticks” per second is 10 milliseconds per
tick).

This function will return the time stamp regardless of whether
a timer was set up with settimer.

See also: settimer

tolower Convert a character to lower case

Syntax: tolower(c)

c The character to convert to lower case.

Returns: The upper case variant of the input character, if one exists, or
the unchanged character code of “c” if the letter “c” has no
lower case equivalent.

Notes: Support for accented characters is platform-dependent.

See also: toupper

toupper Convert a character to upper case

Syntax: toupper(c)

c The character to convert to upper case.

Returns: The lower case variant of the input character, if one exists, or
the unchanged character code of “c” if the letter “c” has no
upper case equivalent.

126 � trackinfo

Notes: Support for accented characters is platform-dependent.

See also: tolower

trackinfo Return track information

Syntax: trackinfo(TrackCode: code, destination{}="",
size=sizeof destination, decoder=1)

code The item from the frame header to read, it is one
of the following:

TrackTitle (0)
The track title.

TrackArtist (1)
The name of the artist or band.

TrackAlbum (2)
The album title.

TrackComment (3)
A general-purpose comment.

TrackCopyright (4)
Copyright information on the track.

TrackSourceID (5)
The ISRC code or any other code that
identifies the track.

TrackFormat (6)
The kind of track, see the notes.

TrackLength (7)
The track duration in milliseconds.

TrackBitrate (8)
The bit rate of the current frame, or the
average bit rate of the track, in kb/s.

TrackSampleFreq (9)
The sampling frequency of the track, in
Hz.

TrackCue (10)
The cue time in milliseconds (silence at
the start of the track).

trackinfo � 127

TrackSegue (11)
The segue time in milliseconds from the
start of the track (silence at the end of
the track).

destination

The buffer that will hold the returned field as
a packed string. This will be set to an empty
string if no ID3 or APE tag is present or if the
requested field is not in the tag.

size The size of the destination buffer in cells. Since
the field is stored as a packed string, the number
of characters that fit in the buffer is 4 times the
value of this parameter.

decoder On devices with multiple decoders, two tracks
can play simultaneously. This parameter speci-
fies which decoder to query.

Returns: The value of the requested item (or 0 if the requested item is
not numeric).

Notes: Some of the track information is read from a “tag” that is
optionally added to a track. MP3 files often have an ID3 tag
or an APE tag, both of which are supported. Other fields are
extracted from the headers or binary information of tracks.
See section “Resources” on page 136 for details on the ID3
and APE tags.

The Starling supports version 2 of the ID3 tag. The support
for Unicode frames in the ID3 tag is limited to the characters
of the Basic Multilingual Plane.

The TrackFormat field is one of the following values:
0 MPEG version 1, layer 3 (MP3)
1 Vorbis
2 WAVE

The track duration can only be reliably calculated by this func-
tion for “variable bit rate” tracks (VBR) that have a “Xing”
header, and for “constant bit rate” tracks (CBR). Some en-
coders create variable bit rate tracks without Xing header.

128 � trackpassword

Depending on the format of the track, the bit rate that this
function returns is either the average bit rate of the complete
track, or the bit rate at the current position in the track. For
constant bit rate files, the bit rate is of course the same at any
position in the file.

An MPEG file consists of independent chunks, called “frames”.
Each frame has a frame header with the above information.
Due to the frames being independent, changes in bit rate, or
even sampling frequency, in the middle of a track are han-
dled transparently. See the section “Resources” on page 136
for pointers to in-depth information on the MPEG audio file
format.

The cue and segue time need to be read from an APE tag. See
the section “Resources” on page 136 for information on the
APE tag and cue/segue times.

The SYLT (Synchronized lyrics) frame in an ID3 tag is not
returned by this function, but events or cues in the SYLT tag
“fire” the public function @synch at the appropriate times.

See also: @synch, play

trackpassword Set the user password for encrypted tracks

Syntax: trackpassword(const password[])

password A string containing your “user password” to use
for the encrypted audio tracks.

Returns: This function currently always returns 0.

Notes: Currently, only MP3 tracks can be encrypted.

This function sets the “user password” for deciphering en-
crypted audio tracks. The user password must match the
password that was used for encrypting the track. If the track
was encrypted without user password, the password parame-
ter should be an empty string.

The encryption algorithm uses both an internal, device-specific
128-bit “system key” and the user password to protect audio

transmit � 129

tracks. The user password is therefore an augmented protec-
tion. Even if the password “leaks out”, the audio files can still
only be played back on a hardware player with the appropriate
system key. The system key is embedded in the firmware in
a way that it cannot be read from the device even if a code
breaker has full access to the device.

Unencrypted audio tracks will still play as before. Setting a
user password has only effect on encrypted tracks.

transmit Transmit a string over the serial line

Syntax: bool: transmit(const data[], length=-1, port=1)

data The array with data to send.

length The number of bytes in the array (which must be
a packed array). If set to -1, the data parameter
must be a zero-terminated string.

port For devices supporting multiple serial ports, this
parameter specifies which port to use.

Returns: true on success, false on failure.

Notes: The serial port must have been set up (“opened”) before using
this function.

To receive data from the serial port, the script must imple-
ment the public function @receive See page 52 for details.
Alternatively, one may call function receive to poll for serial
input.

If software handshaking is enabled (see function setserial),
bytes with the values 17 (0x11, Ctrl-Q), 19 (0x13, Ctrl-S) can-
not be sent either, because these denote the XON and XOFF
signals. When you need to transfer binary data, you should
encode it using a protocol like UU-encode.

Example: See serial.p on page 10.

See also: @receive, receive, setserial

130 � treble

treble Tone adjust (treble)

Syntax: treble(gain, frequency=3000, decoder=1)

gain The gain in the range of −12 dB to +11 dB.

frequency The frequency at which the attenuation/enhan-
cement starts. The This parameter is clamped
between 1 kHz and 15 kHz (1000 to 15.000 Hz).

decoder The decoder to which the tone adjustment ap-
plies. For models with a dual decoder, this pa-
rameter can be 1 or 2. This parameter is ignored
on models with a single decoder.

Returns: true on success, false on failure.

See also: bass, setvolume

uudecode Decode an UU-encoded stream

Syntax: uudecode(dest[], const source[],

maxlength=sizeof dest)

dest The array that will hold the decoded byte array.

source The UU-encoded source string.

maxlength If the length of dest would exceed maxlength

cells, the result is truncated to maxlength cells.
Note that several bytes fit in each cell.

Returns: The number of bytes decoded and stored in dest.

Notes: Since the UU-encoding scheme is used for binary data, the
decoded data is always “packed”. The data is unlikely to be a
string (the zero-terminator may not be present, or it may be
in the middle of the data).

A buffer may be decoded “in-place”; the destination size is
always smaller than the source size. Endian issues (for multi-
byte values in the data stream) are not handled.

uuencode � 131

Binary data is encoded in chunks of 45 bytes. To assemble
these chunks into a complete stream, function memcpy allows
you to concatenate buffers at byte-aligned boundaries.

See also: memcpy, uuencode

uuencode Encode an UU-encoded stream

Syntax: uuencode(dest[], const source[], numbytes,

maxlength=sizeof dest)

dest The array that will hold the encoded string.

source The UU-encoded byte array.

numbytes The number of bytes (in the source array) to
encode. This should not exceed 45.

maxlength If the length of dest would exceed maxlength

cells, the result is truncated to maxlength cells.
Note that several bytes fit in each cell.

Returns: Returns the number of characters encoded, excluding the zero
string terminator; if the dest buffer is too small, not all bytes
are stored.

Notes: This function always creates a packed string. The string has a
newline character at the end.

Binary data is encoded in chunks of 45 bytes. To extract 45
bytes from an array with data, possibly from a byte-aligned
address, you can use the function memcpy.

A buffer may be encoded “in-place” if the destination buffer is
large enough. Endian issues (for multi-byte values in the data
stream) are not handled.

See also: memcpy, uudecode

132 � valstr

valstr Convert a number to text (string)

Syntax: valstr(dest[], value, bool: pack=false)

dest The string to store the text representation of the
number in.

value The number to put in the string dest.

pack If true, dest will become a packed string, oth-
erwise it will be an unpacked string.

Returns: The number of characters stored in dest, excluding the termi-
nating “\0” character.

Notes: Parameter dest should be of sufficient size to hold the con-
verted number. The function does not check this.

See also: strval

version Return the firmware version

Syntax: version(FirmwareVersion: code)

code The code for the requested field, one of the fol-
lowing:
VersionMajor (0)

The major version number, e.g. 1 for ver-
sion 1.2 of the firmware.

VersionMinor (1)
The minor version number, e.g. 2 for ver-
sion 1.2 of the firmware.

VersionBuild (2)
The build number, which is a unique num-
ber for a particular revision of the firm-
ware.

VersionOptions (3)
A bit mask with the options that are com-
piled into the firmware. This value is cur-
rently always zero.

Returns: This function returns the requested value, or zero on error.
Note that the build number is never zero.

watchdog � 133

vumeter Return the volume level

Syntax: vumeter(channel=0, decoder=1)

channel The channel whose volume level to query; it must
be 1 for the left channel and 2 for the right chan-
nel. When setting this value to 0, the function
returns the weighted average of both channels.

decoder The decoder whose volume level to return.

Returns: This function returns the VU value.

Notes: The return value pertains to the level of the audio source. The
values of this function do not change if you adjust the volume
with function setvolume.

See also: setvolume

watchdog Watchdog timer

Syntax: watchdog(seconds)

seconds The number of seconds that the script may use
for handling an event before a full reset is acti-
vated.

Returns: This function currently always returns zero.

Notes: A watchdog timer is a guard against an infinite loop in the
script or other activity that causes the device to hang (and be-
come non-responsive). When setting the watchdog, you specify
the maximum time that the script is allowed to take for han-
dling an event. If the script takes longer than this, the watch-
dog timer assumes that the script is “stuck” and it issues a full
reset of the device.

The time-out that you allow for the watchdog should be long
enough to be confident that something has gone awry in the
script. For example, if the script typically handles an event
within a second, but may take up to 5 seconds on rare oc-
casions, a good value for the watchdog time-out would be 10
seconds (twice the longest latency).

134 � writecfg

See also: reset

writecfg Writes a text field to an INI file

Syntax: bool: writecfg(const filename[]="",

const section[]="", const key[],

const value[])

filename The name and path of the INI file. If this pa-
rameter is not set, the function uses the default
name “config.ini”.

section The section to store the key under. If this pa-
rameter is not set, the function stores the key/
value pair outside any section.

key The key for the field.

value The value for the field.

Returns: true on success, false on failure.

See also: deletecfg, readcfg, writecfgvalue

writecfgvalue Writes a numeric field to an INI file

Syntax: bool: writecfgvalue(const filename[]="",

const section[]="",

const key[], value)

filename The name and path of the INI file. If this pa-
rameter is not set, the function uses the default
name “config.ini”.

section The section to store the key under. If this pa-
rameter is not set, the function stores the key/
value pair outside any section.

key The key for the field.

value The value for the field, as a signed (decimal)
number.

writecfgvalue � 135

Returns: true on success, false on failure.

See also: readcfgvalue, writecfg

136

Resources

The pawn toolkit can be obtained from www.compuphase.com/pawn/
in various formats (binaries and source code archives).

Note that the downloadable version is a general-purpose release, whereas the
one that comes with the Starling is configured for the device. If you wish to
update the pawn tool chain, back up the configuration files “pawn.cfg” and
“default.inc”. These two files contain settings specific for the Starling.

The anatomy of the MPEG files is broadly described on several places on
the web and in books. For example, see:
⋄ http://www.mp3-tech.org/
⋄ “MP3: The Definitive Guide” by Scot Hacker; First Edition March
2000; O’Reilly; ISBN: 1-56592-661-7.

Various “application notes” on how to prepare audio fragments for looping
playback and chaining tracks are available on the compuphase web site, at
the above mentioned address. The number of applications notes will grow
over time, so you are invited to visit on www.compuphase.com/mp3/ a
regular basis.

The MPEG file format is a collection of ISO standards. A detailed spec-
ification can therefore be obtained from the ISO offices. That said, the
description of the “layer 3” audio sub-format consists basically of the source
code of the encode/decoder programs that were developed at Fraunhofer IIS.

The (informal) standard of the ID3 tag is on the site http://www.id3.org
together with links to software that reads and writes these tags. The Starling
only supports version 2 of this tag —version 1 is not supported. Many tag
editors exist, both commercial and freeware, but only few can generate the
SYLT (Synchronized Lyrics) tag.

The APE tag is described at http://wiki.hydrogenaudio.org. In contrast
to the ID3 tag, the APE tag contents are free format, with no mandated field
names. The Starling supports a set of the more common fields.

Since the Starling player/controller is an audio device, it helps to know a
bit about audio and sound. A good start is the description of “decibels”
and how that measure relates to volume, energy and loudness. For more
information, see http://en.wikipedia.org/wiki/Decibel.

137

Index

⋄ Names of persons or companies (not products) are in italics.
⋄ Function names, constants and compiler reserved words are in typewriter

font.

! @alarm, 7, 44
@audiostatus, 44
@eject, 45
@input, 45
@netreceive, 24, 46
@netsnmp, 32, 34, 47
@netstatus, 24, 48
@nettransfer, 35, 50
@receive, 11, 12, 52
@reset, 52
@sample, 53
@synch, 7, 54
@timer, 7, 54

A Absolute value, 61
Alarm clock, see Timer alarm
APE tag, 127, 128
Apple Macintosh, 17
ARP, 87
ASCII, 13
ASN.1 notation, 34
Atomic execution, 2
Audio status, 44, 56
audiostatus, 56
AutoIP, 21

B Back-quote, 20
Balance, 76, 111
Banker’s rounding, 71
Barix, 31

Base 10, see Decimal arithmetic

Base 2, see Binary arithmetic

Basic Multilingual Plane, 12

bass, 56

Baud rate
non-standard ~, 107

Big Endian, 18

Binary files, 17

Bit rate, 26, 126
constant ~, 127
variable ~, 127

Burst mode, 27, 29

C Card eject, 45

CBR, see Constant bit rate

cell, 14

Checksum verification, 82

clamp, 57

clearioqueue, 57

configiopin, 58

Configuration area, 101, 113

Connection
incoming ~, 85
outgoing ~, 81

Constant bit rate, 103, 127

Copy file, 63

Create directory, 66

Crystal adjustment, 124

Cue time, 128

cvttimestamp, 59

138 � Index

D Debouncing, 58
Debugging, 40, 41, 102
delay, 59
Delete file, 70
deletecfg, 60
DHCP, 21, 22, 24, 89, 90

~ lease, 50
Diagnostics, 87, 91, 95
Directory, 66, 70
Directory support, 16
DNS, 21, 84, 86, 87
Dropped digits, 14
DVD player, 12

E Eject (card), 45
Encrypted tracks, 128
End-Of-Line character, 17
Entry point, 1, 46, 52
Event Driven, 1
Event-driven programming, 59
exec, 60
Exponentiation, 68
Extension connector, 112

F fabs, 61
Fade (volume), 77, 111
FAT, 16
fattrib, 61
fblockread, 61
fblockwrite, 62
fclose, 63
fcopy, 63
fdiv, 63
fexist, 64
ffract, 15, 64
fgetchar, 64
File handle, 68

File I/O, 16

File transfer, 31, 35, 82, 96

filecrc, 65

fixed, 15, 65

flength, 65

Flow-driven programming model,
3, 6

fmatch, 66

fmkdir, 66

fmul, 67

fmuldiv, 67

fopen, 68

Forbidden operators, 15

fpower, 68

fputchar, 69

Frame header, 126

Fraunhofer IIS, 136

fread, 69

fremove, 70

frename, 70

fround, 15, 71

fseek, 72

fsqroot, 72

fstat, 73

FTP

~ server, 37, 50

Full duplex, 81

funcidx, 74

Functions

~ index, 74

fwrite, 74

G getarg, 75

getdate, 75

getiopin, 75

gettime, 76

getvolume, 76

Index � 139

H Hacker, Scot, 136
Half duplex, 81
Handshaking, 52, 108, 129
heapspace, 77
Host application, 74
HTTP

~ server, 31, 36, 50

~ streaming, 25, 26, 84, 93

I I/O pins, 45, 57, 58, 75
Icecast, 20, 25–27
ID3 tag, 7, 54, 127, 128
Incoming connection, 85
INI files, 20, 60, 99, 100, 134
ISO/IEC 8859, 17
ispacked, 77

J Jounin, Philippe, 36

L Latency, 26
Latin-1, 17
Lease, 49, 84
LED, 3, 58
Link-local address, 90

~ lease, 50
Linux, 16, 41
Little Endian, 18
LiveCaster, 30

M MAC address, 79, 84
Magic cookie, 68
main, 46
max, 78
memcpy, 78
Meta-data, 27
MIB file, 32, 48
Microsoft DOS, 17

Microsoft Windows, 16, 17, 30, 96

min, 79

Modulus, 15

MP3 anatomy, 136

MP3 file format, 126

MSS, 81

MTU, 81

Multicast, 30, 31

mute, 79

N netarp, 79

NetBIOS, 21, 87

netclose, 80

netconnect, 81

netctrl, 81

netdownload, 82

netinfo, 83

netlisten, 24, 85

netlookup, 86

netping, 87

netsend, 88

netsetup, 89

netshutdown, 90

netsnmpcfg, 91

netsnmptrap, 91

netsocket, 92, 93

netstream, 93

netsynctime, 95

netsyslog, 95

netupload, 96

Network

~ Byte Order, 47, 88

~ diagnostics, 87, 91, 95

~ status, 83

~ time, 49

Network support, 98

numargs, 97

140 � Index

O Operators
forbidden, 15
user-defined, 15

Opto-coupler, 58
Outgoing connection, 81
Overlays, 39

P p.atnetreceive, 46
p.atnetsnmp, 47
p.atnetstatus, 48
p.atnettransfer, 50
p.netarp, 79
p.netclose, 80
p.netconnect, 80
p.netctrl, 81
p.netdownload, 82
p.netinfo, 83
p.netlisten, 85
p.netlookup, 86
p.netping, 86
p.netsend, 88
p.netsetup, 89
p.netshutdown, 90
p.netsnmpcfg, 90
p.netsnmptrap, 91
p.netsocket, 92
p.netstream, 93
p.netsynctime, 94
p.netsyslog, 95
p.netupload, 96
Pack strings, 17
Packed string, 47
Packed strings, 12
Part-per-million, 124
Passive connect, 46, 47, 85
Password
user ~, 128

Path
relative ~, 16

~ separator, 16

pause, 97

pawndbg, 41, 42

Physical link, 48

Ping message, 87

play, 98

Playlist files, 20

Power glitch, 124

Power-up, 53

Pseudo-random numbers, 99

Public

~ functions, 74

Q Quincy IDE, 39–42

R random, 99

readcfg, 99

readcfgvalue, 100

readconfig, 101

Real-time clock, 7

Relative paths, 16

Rename file, 70

Reset, 53

reset, 101

Reset ID, 124

Resource id, 98

resume, 102

Rounding, 14

RS232, 42, 52, 102, 129
begin, 9
close ~, 107
end, 12
open ~, 107

RTP

~ streaming, 30, 84

Index � 141

S Sample frequency, 126
samplepin, 102
Sampling, 53, 103
Scaled integer, 14
SD/MMC card, 45
seekto, 103
Segue time, 128
Server
FTP ~, 50
HTTP ~, 50
TFTP ~, 50

setalarm, 104
setarg, 105
setdate, 7, 106
setiopin, 106
setled, 107
setserial, 107
settime, 7, 109
settimer, 7, 109
settimestamp, 110
setvoltage, 110
setvolume, 111
Shoutcast, 20, 25–27
sleep, 59
SNMP, 32, 47
community, 91
trap, 91

SNTP, 95
Socket, 81
socket, 80
SPI, 112
spi, 112
Square root, 72
Status
network ~, 83

stop, 113
storeconfig, 113
strcat, 114

strcmp, 115

strcopy, 116

strdel, 116

Stream

~ queue, 26, 27, 29

Streaming, 25

~ glitch, 29

HTTP ~, 25, 26, 30, 84, 93

pull ~, 26

~ queue, 26, 84

refresh ~, 30

restart ~, 27

RTP ~, 30, 84

strequal, 117

strfind, 117

strfixed, 15, 118

strformat, 118

strins, 119

strlen, 120

strmid, 120

strpack, 121

strunpack, 122

strval, 122

swapchars, 123

Switch bounce, see Debouncing

Switches, 1

Synchronized event, 54

Synchronized lyrics, 128, 136

sysconfig, 123

Syslog, 96

142 � Index

T TCP/IP, see Network support
TCP/IP protocols, 17
Telnet, 23, 24
Temperature, 124
temperature, 124
Text files, 17
TFTP

~ client, 36

~ server, 31, 35, 50

~ transfer size, 31, 36
TFTPD32, 36
tickcount, 124
Time (network), 49
Timer, 7
single-shot ~, 7
wall-clock ~, 7

Timer alarm, 44, 104
tolower, 125
Tone adjustment, 56, 130
toupper, 125
Track resource, see Resource id
trackinfo, 27, 126
trackpassword, 128
Transferring scripts, 42
transmit, 129
treble, 130
Two’s complement, 14

U Unicast, 31
Unicode, 12, 127

UNIX, 16, 17
UNIX epoch, 59, 61, 73, 76, 110

Unpacked strings, 12, 17

URL, 35, 98

~ parameters, 36, 51

User password (encryption), 128
User-defined operators, 15

UTC, 49, 95

UTF-8, 17
UU-encode, 9, 12, 13, 52, 129–131

uudecode, 130

uuencode, 131

V valstr, 132

Variable bit rate, 103, 127
VBR, see Variable bit rate

version, 132

Volume, 76, 79, 111
vumeter, 133

W watchdog, 133
Wild-card characters, 18

WinAgents, 36

writecfg, 134
writecfgvalue, 134

X Xing header, 103, 127
XON/XOFF, 9, 52, 108, 129

Y Yielding events, 59

	Overview
	Event-driven programming
	Modules
	Timers, synchronization and alarms
	RS232
	Packed and unpacked strings
	UU-encoding
	Rational numbers

	File system
	General file I/O
	Filename matching
	INI files

	Network
	Usage
	Low-level interface
	High-level interface
	Audio streams
	Progressive HTTP versus standard HTTP
	Streaming with progressive HTTP
	Restarting a HTTP stream
	Tips for progressive HTTP streaming
	Streaming with RTP

	Transferring files
	Monitoring and configuration with SNMP
	The MIB file

	HTTP, FTP and TFTP servers
	TFTP server
	HTTP server
	FTP server

	Development and debugging
	Reducing memory requirements
	Finding errors (debugging)
	Transferring scripts over RS232

	Public functions
	Native functions
	Resources
	Index

