
USBHID
Programmer’s Interface

Version 1.6
March 2024

The usbhid library is a programmer s̓ interface to the range of pushbuttons and switch
input boards by CompuPhase. These devices have a “HID” interface, for which every
modern operating system has built-in drivers.

This library is available in the form of 32-bit and 64-bit DLLs for Microsoft Windows,
and a “shared object” for Linux (64-bit only). The library also includes interface files
for various programming languages.

For downloads, see: https://www.compuphase.com/downloads/

Contents
Using usbhid .1

Examples . 1
Function reference . 4
License .12
Index .13

CompuPhase

ii

Trademarks
“CompuPhase” is a trademark of CompuPhase.

“Linux” is a registered trademark of Linus Torvalds.

“Microsoft” and “Microsoft Windows” are registered trademarks of Microsoft Corporation.

“Unicode” is a registered trademark of Unicode, Inc.

Copyright
c⃝ Copyright 2018–2024, CompuPhase; Eerste Industriestraat 19 Bussum, The Netherlands
voice: (+31)-(0)35 6939 261; fax: (+31)-(0)35 6939 293
e-mail: info@compuphase.com; homepage: http://www.compuphase.com

The examples and programs in this manual have been included for their instructional value. They have been
tested with care, but are not guaranteed for any particular purpose.

Examples — 1

Using usbhid

The first function to call is usbhid Initialize. It collects information on all supported
devices that are connected to the workstation. It returns the number of devices that it
has detected.

Most other functions take a device index, between zero and the number of devices (the
number returned by usbhid Initialize). The devices can be uniquely identified by
their model and serial numbers. You can retrieve these numbers for each device using
usbhid GetInfo. Thus, you can map a device index to a specific device.

A wireless dongle supports up to six (wireless) buttons. usbhid GetInfo returns the
serial number of the device inserted in the USB port —meaning: the dongle. To get the
serial numbers of the buttons connected to the dongle, use usbhid GetSwitchSerial.

For buttons, the alternative is to identify each device by the key code sequences defined
in each button. This assumes, of course, that all buttons that are connected to a work-
station are each configured to transmit a different key code (or key sequence). Function
usbhid GetKeyString serves this purpose.

The principal use for usbhid is to switch the LED illumination on or off for illuminated
buttons, or to set or release a relay on a relay driver board. These are the functions
usbhid SetLED and usbhid SetOutput.

When the buttons are used as “buzzers” in a quiz, youwill likely need a “lockout” system
that disables the other buttons immediately after a first button is pressed. This can
be handled in multiple ways. This API provides the usbhid SetDisabled function to
disable (and re-enable) buttons.

Examples
Below is a complete C program that uses an assortment of functions from the usb-
hid library. It must be linked with the appropriate library; 32-bit and 64-bit import li-
braries are provided for Microsoft Windows. Linux programs can link directly against
the shared library (for Linux, the call to the Sleep function must also be replaced with
usleep in the example below).
LISTING: C/C++ program example
#include <stdio.h>
#include "usbhid.h"
int main(void)
{

unsigned count, idx, iter;
/* initialize the library */
count = usbhid_Initialize();
printf("Devices found: %d\n", count);

2 — Examples

/* show connected devices */
for (idx = 0; idx < count; idx++) {

unsigned serial;
int model;
char keystring[100];
usbhid_GetInfo(idx, &serial, &model);
usbhid_GetKeyString(idx, 0, keystring, 100);
printf("Device %d: model %d, serial %u, key \"%s\"\n",

idx, model, serial, keystring);
}
/* find the first device that is an illuminated button */
for (idx = 0; idx < count; idx++) {

int model;
usbhid_GetInfo(idx, NULL, &model);
if (model == 710 || model == 720)

break;
}
/* blink the LED a few times on that button */
for (iter = 0; iter < 10; iter++) {

usbhid_SetLED(idx, (iter & 1) ? LED_OFF : LED_ON, 0);
Sleep(500);

}
usbhid_Close();
return 0;

}

A C# example for Microsoft Windows is below. A C# project must be build with the
“usbhid.cs” interface file. This file selects between the 32-bit and 64-bit DLLs as ap-
propriate.

The C# and VB.Net interface files declare all DLL functions in a wrapper class called
usbhid. Therefore, where a C/C++ programwould call usbhid_Initialize(), a C# or
VB.Net program would invoke this function as usbhid.Initialize() (a dot instead of
an underscore).
LISTING: C# program example
using System;
using System.Text;
using USBHID;
namespace DemoUSBHID {

class Demo {
static void Main() {

/* initialize the library */
uint count = usbhid.Initialize();
Console.WriteLine("Devices found: {0}", count);
/* show connected devices */
uint idx;
for (idx = 0; idx < count; idx++) {

uint serial = 0;
int model = 0;
StringBuilder keystring = new StringBuilder(100);
usbhid.GetInfo(idx, ref serial, ref model);
usbhid.GetKeyString(idx, 0, keystring, 100);

Examples — 3

Console.WriteLine("Device {0}: model {1}, serial {2}, key \"{3}\"",
idx, model, serial, keystring);

}
/* find the first device that is an illuminated button */
for (idx = 0; idx < count; idx++) {

uint serial = 0;
int model = 0;
usbhid.GetInfo(idx, ref serial, ref model);
if (model == 710 || model == 720) break;

}
/* blink the LED a few times on that button */
for (uint iter = 0; iter < 10; iter++){

usbhid.SetLED(idx, (iter & 1) == 1 ? LEDFunction.OFF : LEDFunction.ON, 0);
System.Threading.Thread.Sleep(500);

}
usbhid.Close();

}
}

}

4 — Function reference

Function reference

usbhid Close Frees all allocated resources

usbhid_Close frees memory and resources that are allocated during the session with
the library.

C/C++: void usbhid Close()

C#: void Close()

VB.Net: Sub Close()

Returns: —

See also: usbhid Initialize

usbhid GetInfo Return information on a device

usbhid_GetInfo returns themodel and serial numbers of a connected device, bywhich
it can be uniquely identified.

C/C++: BOOL usbhid GetInfo(unsigned DeviceIndex,
unsigned *SerialNumber,
int *Model)

C#: bool GetInfo(uint DeviceIndex,
ref uint SerialNumber,
ref int Model)

VB.Net: Function GetInfo(ByVal DeviceIndex As UInteger,
ByRef SerialNumber As UInteger,
ByRef Model As Integer) As Boolean

DeviceIndex
The index of the device, a value between 0 and the number
of devices.

SerialNumber
Holds the serial number of the device upon return.

Model Holds the model number of the device upon return.

Returns: In C: TRUE on success, FALSE on failure.
In C# & C++: true on success, false on failure.

Notes: Current model numbers are:

usbhid GetKeyString — 5

700 large dome button (non-illuminated)
710 illuminated large dome button
720 illuminated pushbutton
730 wireless dongle (for the battery-powered buttons)
735 wireless dongle for the battery-free wireless buttons
740 pendant switch

See also: usbhid GetKeyString, usbhid GetSwitchSerial,
usbhid Initialize

usbhid GetKeyString Return the buttons̓ key code sequence

usbhid_GetInfo returns the key code (or the key sequence) for a button device. This
key code sequence may be used to identify the button (when multiple buttons are con-
nected to a workstation, each is typically configured to a different key combination).

C/C++: BOOL usbhid GetKeyString(unsigned DeviceIndex,
unsigned SwitchIndex,
TCHAR *KeyString,
unsigned MaxLength)

C#: bool GetKeyString(uint DeviceIndex,
uint SwitchIndex,
StringBuilder KeyString,
uint MaxLength)

VB.Net: Function GetKeyString(ByVal DeviceIndex As UInteger,
ByVal SwitchIndex As UInteger,
ByVal KeyString As StringBuilder,
ByVal MaxLength As UInteger)
As Boolean

DeviceIndex
The index of the device, a value between 0 and the number
of devices.

SwitchIndex
For devices that support multiple switches (such as the
wireless dongles), this parameter indicates the switch
index, starting from 0. For devices that support a single
switch, this parameter should be set to zero.

KeyString Holds a description of the key code (or the key sequence).
See the notes for details.

MaxLength The size in characters of parameter KeyString.

6 — usbhid GetSwitchSerial

Returns: In C: TRUE on success, FALSE on failure.
In C# & C++: true on success, false on failure.
This function fails when the device is not a button.

Notes: In Microsoft Windows, this function is available in ASCII and Unicode
variants. In Linux, only the ASCII version is available.

When abutton is configured to transmit a single digit or alphabetical char-
acter, the return value is a string with that digit or letter as its single ele-
ment. Keys that are not digits or letters are returned by a descriptive label,
for example “Enter”.

A key may be prefixed with shift codes. For example, “Shift + Tab”
means that the TAB key was typed with the shift key pressed. Other shift
codes are “Alt”, “Ctrl” and “GUI”. The “GUI” key is the “Windows” key
in Microsoft Windows, and the “Apple” key (or “command” key) in Apple
OSX.

See also: usbhid GetInfo, usbhid Initialize, usbhid SetLayout

usbhid GetSwitchSerial Get the serial number of a switch

usbhid_GetSwitchSerial returns the serial number of a switch that is attached to a
dongle.

C/C++: BOOL usbhid GetSwitchSerial(unsigned DeviceIndex,
unsigned SwitchIndex,
unsigned *SerialNumber)

C#: bool GetSwitchSerial(uint DeviceIndex,
uint SwitchIndex,
ref uint SerialNumber)

VB.Net: Function GetSwitchSerial(ByVal DeviceIndex As UInteger,
ByVal SwitchIndex As UInteger,
ByRef SerialNumber As UInteger)
As Boolean

DeviceIndex
The index of the device, a value between 0 and the number
of devices.

SwitchIndex
For devices that support multiple switches (such as the
wireless dongles), this parameter indicates the switch
index, starting from 0. For devices that support a single
switch, this parameter should be set to zero.

usbhid IsSwitchDown — 7

SerialNumber
Holds the serial number of the device upon return.

Returns: In C: TRUE on success, FALSE on failure.
In C# & C++: true on success, false on failure.
This function fails when the device is not a button or switch.

Notes: For devices that support multiple switches (such as the wireless dongles),
function usbhid GetInfo returns the serial number of the dongle. This
function returns the serial number of the connected switches.

For devices that support only a single switch, this function succeeds only
when SwitchIndex is zero, and the serial number that it returns is the
same as the one returned by usbhid GetInfo.

See also: usbhid GetInfo

usbhid Initialize Initialize the library

usbhid_Initialize initializes the library and returns the number of supported de-
vices.

C/C++: unsigned usbhid Initialize()

C#: uint Initialize()

VB.Net: Function Initialize() As UInteger

Returns: The number of supported devices connected to the workstation, or 0 on
failure.

Notes: This function must be called before any other function from the usbhid
library. The memory and resources allocated by this function are freed
with usbhid Close.

After a device is connected or disconnected, this function should be called
again, so that the device list is updated.

See also: usbhid Close, usbhid GetInfo

usbhid IsSwitchDown Test switch status

usbhid_Initialize checks whether a switch is “down”.

C/C++: BOOL usbhid IsSwitchDown(unsigned DeviceIndex,
unsigned SwitchIndex)

C#: bool IsSwitchDown(uint DeviceIndex, uint SwitchIndex)

8 — usbhid SetDisabled

VB.Net: IsSwitchDown(ByVal DeviceIndex As UInteger,
ByVal SwitchIndex As UInteger) As Boolean

DeviceIndex
The index of the device, a value between 0 and the number
of devices.

SwitchIndex
For devices that support multiple switches (such as the
wireless dongles), this parameter indicates the switch
index, starting from 0. For devices that support a single
switch, this parameter should be set to zero.

Returns: In C: TRUE on success, FALSE on failure.
In C# & C++: true on success, false on failure.

Notes: One use for this function is to check whether a “key input” event came
from a switch or from the keyboard. Alternatively, for a system without
display or terminal, this function may be needed to capture switch input
(your application may not get “focus” when the operating system fails to
detect a display).

The USB HID device latches the “switch down” state for 0.2 seconds. So
when a switch is released within 0.2 seconds after being pressed, the re-
turned status will still be reported as“down” for 0.2 seconds.

As a result of the above, if an application relies on this function to capture
switch input, rather than responding to “key input” events, the application
should poll this function at an interval below 0.2 seconds.

See also: usbhid GetInfo, usbhid SetLed

usbhid SetDisabled Temporarily disables a switch

usbhid_SetDisabled disables a switch until it is re-enabled or until it is power-cycled.
When disabled, a switch does not transmit button presses or releases (but it still re-
sponds to other commands, such as switching the illumination on or off).

C/C++: BOOL usbhid SetDisabled(unsigned DeviceIndex,
unsigned short Disabled)

C#: bool SetDisabled(uint DeviceIndex,
ushort Disabled)

VB.Net: Function SetDisabled(ByVal DeviceIndex As UInteger,
ByVal Disabled As UShort) As Boolean

usbhid SetLayout — 9

DeviceIndex
The index of the device, a value between 0 and the number
of devices.

Disabled Should be 1 to disable the switch, or 0 to re-enabled it.

Returns: In C: TRUE on success, FALSE on failure.
In C# & C++: true on success, false on failure.

Notes: When a switch is disabled while it is pressed, the switch will immedi-
ately transmit a “key-up” status to the workstation, but ignore any further
presses or releases of the switch. Function usbhid IsSwitchDown returns
false for a disabled switch, regardless of its true state. When a switch is
enabled while it was pressed, it will transmit a “key-down” status to the
workstation immediately after being enabled.

See also: usbhid IsSwitchDown, usbhid SetLED

usbhid SetLayout Set keyboard layout

usbhid_SetLayout sets the keyboard layout, to use for usbhid GetKeyString.

C/C++: BOOL usbhid SetLayout(int Layout)

C#: bool SetLayout(int Layout)

VB.Net: Function SetLayout(ByVal Layout As Integer) As Boolean

Layout Can be one of the following:
LAYOUT BELGIAN AZERTY
LAYOUT CANADIAN
LAYOUT DANISH
LAYOUT FRENCH AZERTY
LAYOUT GERMAN QWERTZ
LAYOUT INTERNATIONAL “US International” layout
LAYOUT ITALIAN
LAYOUT LATIN AMERICAN
LAYOUT NORWEGIAN
LAYOUT PORTUGUESE
LAYOUT SPANISH
LAYOUT SWEDISH
LAYOUT UK UK “Extended” layout
LAYOUT US

For C#, see also the notes.

Returns: In C: TRUE on success, FALSE on failure.
In C# & C++: true on success, false on failure.

10 — usbhid SetLED

Notes: The pushbuttons (and other input devices) store the key code(s) in a uni-
versal encoding as defined in the USB standard. The actual function ofa
key, depends on the active “layout” in the operating system. As a result,
the string returned by usbhid GetKeyString is also interpreted to the ac-
tive layout. However, this usbhid library requires the application to set the
layout to use.

The default layout is “US”.

In C#, the values for parameter Layout are in the enumerated type Kbd-
Layout.

See also: usbhid GetKeyString

usbhid SetLED Turn LED illumination on or off

usbhid_SetLED switches the illumination on or off, on illuminated buttons. This func-
tion has no effect on non-illuminated buttons.

C/C++: BOOL usbhid SetLED(unsigned DeviceIndex,
unsigned short Function,
unsigned short Dimming)

C#: bool SetLED(uint DeviceIndex,
LEDFunction Function,
ushort Dimming)

VB.Net: Function SetLED(ByVal DeviceIndex As UInteger,
ByVal LEDFunc As LEDFunction,
ByVal Dimming As UShort) As Boolean

DeviceIndex
The index of the device, a value between 0 and the number
of devices.

Function Can be one of the following:
LED OFF Turn illumination off.
LED ON Turn illumination on (continuously).
LED BLINK Set the illumination to blink.

For C#, see also the notes.

Dimming The dimming level for illumination, see the notes.

Returns: In C: TRUE on success, FALSE on failure.
In C# & C++: true on success, false on failure.

usbhid Version — 11

Notes: On models that support dimming, parameter Dimming holds a value be-
tween 0 and 15, where 0 is full intensity and 15 is the lowest illumination
level. On models that do not support dimming, parameter Dimming is ig-
nored.

InC#, the values for parameter Function are in the enumerated type LED-
Function, which has elements OFF, ON and BLINK.

See also: usbhid Initialize, usbhid SetOutput

usbhid Version Get the version of the library

usbhid_Version returns the version of the library.

C/C++: unsigned usbhid Version()

C#: uint Version()

VB.Net: Function Version() As UInteger

Returns: The version number of the usbhid library in a format where the minor
version is in the low byte and the major version number is in the second
byte. The return value 0x104 represents version 1.4.

12 — License

License
This manual and the software programs consisting of all the files included in the “us-
bhid” package and hereafter collectively referred to as “the product”, is copyright c⃝
2018–2024 CompuPhase. The product under this license is provided free of charge. You
are granted a non-exclusive license to use the product for under the following condi-
tions:

YOUMAY:

⋄ Use the files in the product to build your own applications.

⋄ Copy and distribute the product s̓ DLL files with your applications, under a license of
your own choice.

⋄ Copy the product, and distribute copies of the product, provided that you distribute
the complete and unmodified product (including this manual with the copyright, li-
cense and disclaimer of warranty).

YOUMAY NOT:

⋄ Use the product for illegal purposes.

⋄ Remove or conceal the copyright of the product, or claim copyright on (parts of) the
product.

⋄ Charge money or fees for redistributing the product, except to cover distribution
costs.

LIMITEDWARRANTY:

CompuPhase cannot be held liable for any damage or loss of profits that results from
the use of the product (or part thereof), or from the inability to use it, to the extent that
the law permits.

Index — 13

Index

A Apple key, 6
AZERTY, 9

B Buzzers, 1

D Dimming (illumination), 11
Dongle, 7

H HID interface, i

I Illuminated button, 1, 10
Import library, 1

K Key code sequence, 5
Key sequence, 1
Keyboard layout, 9

L LED illumination, 10
License, 12
Linux, 1
Lockout system, 1

M Model number, 1, 4

Q QWERTZ, 9

S Serial number, 1, 4, 7
Shared library, 1

U Unicode, 6
usbhid Close, 4
usbhid GetInfo, 4
usbhid GetKeyString, 5
usbhid GetSwitchSerial, 6
usbhid Initialize, 7
usbhid IsSwitchDown, 7
usbhid SetDisabled, 8
usbhid SetLayout, 9
usbhid SetLED, 10
usbhid Version, 11

V Version, 11

W Windows key, 6
Wireless dongle, 7

	Using usbhid
	Examples

	Function reference
	License
	Index

